The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE ...The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.展开更多
OBJECTIVE: To investigate the antiepileptic effects of Chaihushugan decoction(CHSGD) in rats with pentylenetetrazole(PTZ)-induced seizures and to discuss the impact of CHSGD on glutamate metabolism, a hypothesized und...OBJECTIVE: To investigate the antiepileptic effects of Chaihushugan decoction(CHSGD) in rats with pentylenetetrazole(PTZ)-induced seizures and to discuss the impact of CHSGD on glutamate metabolism, a hypothesized underlying mechanism of seizure reduction.METHODS: Fifty Wistar rats were divided randomly into either control(n = 10) or experimental(n = 40)groups. Rats in the control group were administered physiological saline intraperitoneally. A subconvulsive dose of PTZ(35 mg/kg) was administered intraperitoneally to rats in the experimental group to induce seizures. The fully PTZ-kindled rats were then randomly divided into five subgroups(n = 8 each) based on the following treatment categories: physiological saline, VPA(200 mg/kg), CHSGD(2.5 g/kg), CHSGD(5 g/kg), or CHSGD(10 g/kg),administered orally once per day, respectively. On day 28 following initiation of drug treatment, seizures were monitored. The rats were then sacrificed, and hippocampal dissections were performed for subsequent studies.RESULTS: CHSGD significantly prolonged the latency of myoclonic, clonic, and tonic seizures, while decreasing overall seizure rates in the kindled rats.The measured concentrations of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose(2-NBDG) and glutamate were significantly lower in the hippocampi of kindled rats in groups treated with CHSGD compared with those treated with PTZ alone. In addition, CHSGD was found to up-regulate both the expression of glutamate transporter-1(GLT-1) protein and the activity of glutamine synthetase(GS) in the hippocampi of kindled rats.CONCLUSION: These results suggest that CHSGD has antiepileptic effects on PTZ-induced seizures.The results further suggest an increase in glutamate metabolism at the synaptic cleft is a putative underlying mechanism of seizure reduction.展开更多
GABA transporter 1(GAT1) takes important roles in multiple physiological processes through the uptake and release of GABA, but the regulation of GAT1 gene expression in different tissues is rarely known. To address th...GABA transporter 1(GAT1) takes important roles in multiple physiological processes through the uptake and release of GABA, but the regulation of GAT1 gene expression in different tissues is rarely known. To address the question, first, 5’ Rapid amplification of cDNA end (RACE) was used to determine GAT1 transcriptional starting sites in neonatal mouse cerebral cortex and intestine, adult mouse brain and adult rat testis. The products of 5’RACE were confirmed by DNA sequencing. We found that the transcript of GAT1 in neonatal mouse cerebral cortex and adult mouse brain starts at the same site (inside of exon 1), while in mouse intestine, GAT1 starts transcription in intron 1, and in rat testis, the transcript of GAT1 has an additional untranslation exon to the 5’ direction.展开更多
OBJECTIVE: To investigate the distribution, changes and a possible role for retinal dopamine transporter (DAT) in experimental myopia in chickens. METHODS: Two-day-old chickens were divided into four groups. Chicken e...OBJECTIVE: To investigate the distribution, changes and a possible role for retinal dopamine transporter (DAT) in experimental myopia in chickens. METHODS: Two-day-old chickens were divided into four groups. Chicken eyes were fitted with lenses of -10D,-20D and translucent goggles unilaterally. Normal eyes were used as controls. After 3 wk, all chickens were given an intramuscular injection of (125)I-beta-CIT 2beta-carbomethoxy-3beta-(4-iodophenyl)tropane and sacrificed two hours post injection. Retinal pigment epithelium (RPE) and the neural retina were obtained together or RPE was dissected out from the neural retina. Radioactive DAT from each specimen was assayed by gamma-counter. RESULTS: Retinal DAT was detected in RPE specimens rather than in the neural retina in all eyes. Radioactive DAT in myopic eyes was higher, compared with control eyes. CONCLUSIONS: Retinal DAT is mainly located in the RPE and may be involved in the formation of lens induced myopia (LIM) and form deprivation myopia (FDM). These methods may provide a new approach for further studying the role of the dopamine system in experimental myopia.展开更多
The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by th...The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by the plasma membrane H +_ATPase were studied. The results showed that the proton transport activity was increased by 850% in the presence of 100 mmol/L KCl, while ATP hydrolytic activity was only increased by 28.2%. Kinetic studies showed that K m of ATP hydrolysis decreased from 1.14 to 0.7 mmol/L, while V max of ATP hydrolysis increased from 285.7 to 344.8 nmol Pi·mg -1 protein·min -1 in the presence of KCl. Experiments showed that the optimum pH was 6.5 and 6.0 in the presence and absence of KCl, respectively. Further studies revealed that K + could promote the inhibitory effects of hydroxylamines and vanadates on the ATP hydrolytic activity. The above results suggested that K + could regulate the coupling between ATP hydrolysis and proton transport of the plasma membrane H +_ATPase through modulating the structure and function of the kinase and phosphatase domains of the plasma membrane H +_ATPase.展开更多
Geomagnetic storm events have a strong influence on the ionosphere–thermosphere(I-T)coupling system.Analyzing the regional response process of the I-T system and its differences across the northern and southern hemis...Geomagnetic storm events have a strong influence on the ionosphere–thermosphere(I-T)coupling system.Analyzing the regional response process of the I-T system and its differences across the northern and southern hemispheres is an important but challenging task.In this study,we used a combination of multiple observations and a model simulation to examine the north–south hemispheric difference in the I-T coupling system in the American and Asian sectors during the geomagnetic superstorm that occurred in May 2024.Observations of the total electron content(TEC)showed that the Asian sector had negative storms in the northern hemisphere and positive storms in the southern hemisphere,a process that exacerbated the hemispheric differences in the TEC.However,both hemispheres of the American sector showed negative storms.The thermospheric composition changes also differed between the two sectors,and their variation could partially explain the hemispheric differences caused by positive and negative storms.Moreover,the influence of the thermospheric density change was less than that of the thermospheric composition.Finally,the dynamic effect of the thermospheric wind and the plasma transport processes strongly modulated the north–south differences in the TEC at nighttime in the American and Asian sectors,respectively,during this superstorm.展开更多
In this paper,we extend the unified gas-kinetic wave-particle(UGKWP)methods to the multi-species gas mixture and multiscale plasma transport.The construction of the scheme is based on the direct modeling on the mesh s...In this paper,we extend the unified gas-kinetic wave-particle(UGKWP)methods to the multi-species gas mixture and multiscale plasma transport.The construction of the scheme is based on the direct modeling on the mesh size and time step scales,and the local cell’s Knudsen number determines the flow physics.The proposed scheme has the multiscale and asymptotic complexity diminishing properties.The multiscale property means that according to the cell’s Knudsen number the scheme can capture the non-equilibrium flow physics when the cell size is on the kinetic mean free path scale,and preserve the asymptotic Euler,Navier-Stokes,and magnetohydrodynamics(MHD)when the cell size is on the hydrodynamic scale and is much larger than the particle mean free path.The asymptotic complexity diminishing property means that the total degrees of freedom of the scheme reduce automatically with the decreasing of the cell’s Knudsen number.In the continuum regime,the scheme automatically degenerates from a kinetic solver to a hydrodynamic solver.In the UGKWP,the evolution of microscopic velocity distribution is coupled with the evolution of macroscopic variables,and the particle evolution as well as the macroscopic fluxes is modeled from a time accumulating solution of kinetic scale particle transport and collision up to a time step scale.For plasma transport,the current scheme provides a smooth transition from particle-in-cell(PIC)method in the rarefied regime to the magnetohydrodynamic solver in the continuum regime.In the continuum limit,the cell size and time step of the UGKWP method are not restricted by the particle mean free path and mean collision time.In the highly magnetized regime,the cell size and time step are not restricted by the Debye length and plasma cyclotron period.The multiscale and asymptotic complexity diminishing properties of the scheme are verified by numerical tests in multiple flow regimes.展开更多
文摘The sympathetic nervous system plays a cardinal role in regulating cardiac function through releasing the neurotransmitter norepinephrine (NE). In comparison with central nervous system, the molecular mechanism of NE uptake in myocardium is not clear. In present study, we proved that in rat the CNS type of NE transporter (NET) was also expressed in middle cervical-stellate ganglion complex (MC-SG complex) which is considered to control the activity of heart, but not expressed in myocardium. The results also showed that NET expression level in right ganglion was significantly higher than in the left, rendering the greater capacity of NE uptake in right ventricle, a fact which may contribute to the maintenance of right ventricular function under pathologic state.
基金Supported by Guangdong Natural Science Foundation(The effects of "Treatment from Gan"on Regulation of A-type Potassium Channels by KChIP/Kv4 in the pathomechanism of Refractory Epilepsy,No.2014A030310052)National Natural Science Foundation of China(Study on Regulation of A-type Potassium Channels by KChIP/Kv4 in the Pathomechanism of Refractory Epilepsy and the Effects of "Treatment from Gan",No.81503564)
文摘OBJECTIVE: To investigate the antiepileptic effects of Chaihushugan decoction(CHSGD) in rats with pentylenetetrazole(PTZ)-induced seizures and to discuss the impact of CHSGD on glutamate metabolism, a hypothesized underlying mechanism of seizure reduction.METHODS: Fifty Wistar rats were divided randomly into either control(n = 10) or experimental(n = 40)groups. Rats in the control group were administered physiological saline intraperitoneally. A subconvulsive dose of PTZ(35 mg/kg) was administered intraperitoneally to rats in the experimental group to induce seizures. The fully PTZ-kindled rats were then randomly divided into five subgroups(n = 8 each) based on the following treatment categories: physiological saline, VPA(200 mg/kg), CHSGD(2.5 g/kg), CHSGD(5 g/kg), or CHSGD(10 g/kg),administered orally once per day, respectively. On day 28 following initiation of drug treatment, seizures were monitored. The rats were then sacrificed, and hippocampal dissections were performed for subsequent studies.RESULTS: CHSGD significantly prolonged the latency of myoclonic, clonic, and tonic seizures, while decreasing overall seizure rates in the kindled rats.The measured concentrations of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose(2-NBDG) and glutamate were significantly lower in the hippocampi of kindled rats in groups treated with CHSGD compared with those treated with PTZ alone. In addition, CHSGD was found to up-regulate both the expression of glutamate transporter-1(GLT-1) protein and the activity of glutamine synthetase(GS) in the hippocampi of kindled rats.CONCLUSION: These results suggest that CHSGD has antiepileptic effects on PTZ-induced seizures.The results further suggest an increase in glutamate metabolism at the synaptic cleft is a putative underlying mechanism of seizure reduction.
基金foundations from Chinese Academy of Sciences and Special Funds for Major State Basic reseaxch of China (G1999053903).
文摘GABA transporter 1(GAT1) takes important roles in multiple physiological processes through the uptake and release of GABA, but the regulation of GAT1 gene expression in different tissues is rarely known. To address the question, first, 5’ Rapid amplification of cDNA end (RACE) was used to determine GAT1 transcriptional starting sites in neonatal mouse cerebral cortex and intestine, adult mouse brain and adult rat testis. The products of 5’RACE were confirmed by DNA sequencing. We found that the transcript of GAT1 in neonatal mouse cerebral cortex and adult mouse brain starts at the same site (inside of exon 1), while in mouse intestine, GAT1 starts transcription in intron 1, and in rat testis, the transcript of GAT1 has an additional untranslation exon to the 5’ direction.
基金ThisworkwassupportedbytheKeyProjectofClinicalScienceoftheHealthyMinistryofChina (No 970 3 0 2 2 5 )
文摘OBJECTIVE: To investigate the distribution, changes and a possible role for retinal dopamine transporter (DAT) in experimental myopia in chickens. METHODS: Two-day-old chickens were divided into four groups. Chicken eyes were fitted with lenses of -10D,-20D and translucent goggles unilaterally. Normal eyes were used as controls. After 3 wk, all chickens were given an intramuscular injection of (125)I-beta-CIT 2beta-carbomethoxy-3beta-(4-iodophenyl)tropane and sacrificed two hours post injection. Retinal pigment epithelium (RPE) and the neural retina were obtained together or RPE was dissected out from the neural retina. Radioactive DAT from each specimen was assayed by gamma-counter. RESULTS: Retinal DAT was detected in RPE specimens rather than in the neural retina in all eyes. Radioactive DAT in myopic eyes was higher, compared with control eyes. CONCLUSIONS: Retinal DAT is mainly located in the RPE and may be involved in the formation of lens induced myopia (LIM) and form deprivation myopia (FDM). These methods may provide a new approach for further studying the role of the dopamine system in experimental myopia.
文摘The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by the plasma membrane H +_ATPase were studied. The results showed that the proton transport activity was increased by 850% in the presence of 100 mmol/L KCl, while ATP hydrolytic activity was only increased by 28.2%. Kinetic studies showed that K m of ATP hydrolysis decreased from 1.14 to 0.7 mmol/L, while V max of ATP hydrolysis increased from 285.7 to 344.8 nmol Pi·mg -1 protein·min -1 in the presence of KCl. Experiments showed that the optimum pH was 6.5 and 6.0 in the presence and absence of KCl, respectively. Further studies revealed that K + could promote the inhibitory effects of hydroxylamines and vanadates on the ATP hydrolytic activity. The above results suggested that K + could regulate the coupling between ATP hydrolysis and proton transport of the plasma membrane H +_ATPase through modulating the structure and function of the kinase and phosphatase domains of the plasma membrane H +_ATPase.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42030202, 42241115, and 42174204)the China Postdoctoral Science Foundation (Grant No. 2023M743467)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. Y202021)the National Key R&D Program of China (Grant No. 2022YFF0504400)the Opening Funding of the Chinese Academy of Sciences dedicated to the Chinese Meridian Project
文摘Geomagnetic storm events have a strong influence on the ionosphere–thermosphere(I-T)coupling system.Analyzing the regional response process of the I-T system and its differences across the northern and southern hemispheres is an important but challenging task.In this study,we used a combination of multiple observations and a model simulation to examine the north–south hemispheric difference in the I-T coupling system in the American and Asian sectors during the geomagnetic superstorm that occurred in May 2024.Observations of the total electron content(TEC)showed that the Asian sector had negative storms in the northern hemisphere and positive storms in the southern hemisphere,a process that exacerbated the hemispheric differences in the TEC.However,both hemispheres of the American sector showed negative storms.The thermospheric composition changes also differed between the two sectors,and their variation could partially explain the hemispheric differences caused by positive and negative storms.Moreover,the influence of the thermospheric density change was less than that of the thermospheric composition.Finally,the dynamic effect of the thermospheric wind and the plasma transport processes strongly modulated the north–south differences in the TEC at nighttime in the American and Asian sectors,respectively,during this superstorm.
基金supported by National Numerical Windtunnel project and National Science Foundation of China 11772281,91852114.
文摘In this paper,we extend the unified gas-kinetic wave-particle(UGKWP)methods to the multi-species gas mixture and multiscale plasma transport.The construction of the scheme is based on the direct modeling on the mesh size and time step scales,and the local cell’s Knudsen number determines the flow physics.The proposed scheme has the multiscale and asymptotic complexity diminishing properties.The multiscale property means that according to the cell’s Knudsen number the scheme can capture the non-equilibrium flow physics when the cell size is on the kinetic mean free path scale,and preserve the asymptotic Euler,Navier-Stokes,and magnetohydrodynamics(MHD)when the cell size is on the hydrodynamic scale and is much larger than the particle mean free path.The asymptotic complexity diminishing property means that the total degrees of freedom of the scheme reduce automatically with the decreasing of the cell’s Knudsen number.In the continuum regime,the scheme automatically degenerates from a kinetic solver to a hydrodynamic solver.In the UGKWP,the evolution of microscopic velocity distribution is coupled with the evolution of macroscopic variables,and the particle evolution as well as the macroscopic fluxes is modeled from a time accumulating solution of kinetic scale particle transport and collision up to a time step scale.For plasma transport,the current scheme provides a smooth transition from particle-in-cell(PIC)method in the rarefied regime to the magnetohydrodynamic solver in the continuum regime.In the continuum limit,the cell size and time step of the UGKWP method are not restricted by the particle mean free path and mean collision time.In the highly magnetized regime,the cell size and time step are not restricted by the Debye length and plasma cyclotron period.The multiscale and asymptotic complexity diminishing properties of the scheme are verified by numerical tests in multiple flow regimes.