The discovery of nickelates superconductor creates exciting opportunities to unconventional superconductivity. However, its synthesis is challenging and only a few groups worldwide can obtain samples with zero-resista...The discovery of nickelates superconductor creates exciting opportunities to unconventional superconductivity. However, its synthesis is challenging and only a few groups worldwide can obtain samples with zero-resistance. This problem becomes the major barrier for this field. From plume dynamics perspective, we found the synthesis of superconducting nickelates is a complex process and the challenge is twofold, i.e., how to stabilize an ideal infinite-layer structure Nd_(0.8)Sr_(0.2)NiO_(2), and then how to make Nd_(0.8)Sr_(0.2)NiO_(2) superconducting? The competition between perovskite Nd_(0.8)Sr_(0.2)NiO_(3) and Ruddlesden−Popper defect phase is crucial for obtaining infinite-layer structure. Due to inequivalent angular distributions of condensate during laser ablation, the laser energy density is critical to obtain phase-pure Nd_(0.8)Sr_(0.2)NiO_(3). However, for obtaining superconductivity, both laser energy density and substrate temperature are very important. We also demonstrate the superconducting Nd_(0.8)Sr_(0.2)NiO_(2) epitaxial film is very stable in ambient conditions up to 512 days. Our results provide important insights for fabrication of superconducting infinite-layer nickelates towards future device applications.展开更多
This paper introduces and establishes a quasi-three-dimensional physical model of the interaction between a laser and a slab target.In contrast to previous one-dimensional analytical models,this paper innovatively fit...This paper introduces and establishes a quasi-three-dimensional physical model of the interaction between a laser and a slab target.In contrast to previous one-dimensional analytical models,this paper innovatively fits the real laser conditions based on an isothermal,homogeneous expansion similarity solution of the ideal hydrodynamic equations.Using this simple model,the evolution law and analytical formulae for key parameters(e.g.,temperature,density and scale length)in the corona region under certain conditions are given.The analytical solutions agree well with the relevant results of computational hydrodynamics simulation.For constant laser irradiation,the analytical solutions provide a meaningful power-law scaling relationship.The model provides a set of mathematical and physical tools that give theoretical support for adjusting parameters in experiments.展开更多
The discharge characteristics and mechanism of sub-millimeter pulsed dielectric barrier discharge in atmosphericpressure helium are investigated experimentally and theoretically, demonstrating that when the discharge ...The discharge characteristics and mechanism of sub-millimeter pulsed dielectric barrier discharge in atmosphericpressure helium are investigated experimentally and theoretically, demonstrating that when the discharge gap distance is reduced from 1.00 mm to 0.20 mm, the discharge ignition time is reduced to approximately 40 ns and discharge intensity is enhanced in terms of the discharge optical emission intensity and density of the plasma species,(energetic electrons with energy above 8.40 e V). The simulated results show that as the discharge gap distance is further reduced to 0.10 mm,the number of energetic electrons decreases, which is attributable to the contraction of plasma bulk regime and reduction of electron density in the discharge bulk. Conversely, the proportion of energetic electrons to the total electrons in the discharge monotonically increases as the discharge gap distance is reduced from 1.00 mm to 0.10 mm. It is proposed that a gap distance of 0.12 mm is optimal to achieve a high concentration and proportion of energetic electrons in sub-millimeter pulsed atmosphere dielectric barrier discharge.展开更多
In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectra...In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.展开更多
In this study,combining the single point diamond turning(SPDT)and spark plasma sintering(SPS),we achieved high-strength diffusion bonding of copper at an ultra-low temperature of 202℃(0.35 T_(m),T_(m):absolute temper...In this study,combining the single point diamond turning(SPDT)and spark plasma sintering(SPS),we achieved high-strength diffusion bonding of copper at an ultra-low temperature of 202℃(0.35 T_(m),T_(m):absolute temperature of the melting point).Additionally,the closure mechanism of interfacial micro-and nano-voids during the Cu-Cu SPS diffusion bonding is systematically revealed for the first time.For micro-voids,the pulsed current is found to induce additional diffusion flux and plastic deformation,thereby facilitating the void closure.Molecular dynamics(MD)simulation revealed that at the atomic scale,high-energy Cu atoms induced by the pulsed current can significantly promote the diffusion of low-energy atoms in their vicinity and accelerate the void closure.This study also proposes a novel“evaporation-deposition”nano-void closure mechanism for the previously unstudied nano-void closure process.The results show that the synergistic effect of the pulsed current and nanoscale surface rough-ness can significantly improve joint strength.At a low temperature of 405℃(0.5 T_(m)),on combining the computerized numerical control(CNC)turning and SPS diffusion bonding,the joint strength can reach 212 MPa,while that for the joint obtained by traditional hot pressing diffusion bonding at the same tem-perature is only 47 MPa.We obtained an ultra-high joint strength of 271 MPa using the combined process of SPDT and SPS diffusion bonding at an ultra-low temperature of 202℃(0.35 T_(m)),which is approximately 600℃ lower than the traditional diffusion bonding process temperature of 800℃(0.79 T_(m)).To sum up,this study provides a novel method and theoretical support for realizing low-temperature high-strength diffusion bonding.展开更多
The aim of the research was to investigate the pharmacokinetics(PK) of enteric-coated mycophenolate sodium(EC-MPS) by quantification of the active metabolite of mycophenolic acid(MPA)after multiple escalating oral dos...The aim of the research was to investigate the pharmacokinetics(PK) of enteric-coated mycophenolate sodium(EC-MPS) by quantification of the active metabolite of mycophenolic acid(MPA)after multiple escalating oral doses in Han kidney transplant recipients. A total of 28 Han postoperative kidney transplant recipients were given a multiple-dose of 540, 720 or 900 mg of EC-MPS two times a day in combination with tacrolimus for 6 days. Blood specimens were collected at each time point from0 to 12 h after EC-MPS administration. MPA plasma concentrations were measured by UPLC–UV. The relationship between the EC-MPS dose and its PK parameters was assessed. In the range from 540 to900 mg, C_(max) and AUC_(0–12h) did not increase with dose escalation. The AUC_(0–12h), C_(max), C_0 and T_(max) for the 540 720 and 900 mg doses were not significantly different, respectively(P 40.05). AUC_0–12 h and C_(max) were increased less than proportionally with increasing EC-MPS dose levels. Inter-individual variability in AUC_(0–12h), C_(max) and C_0 were considerable. Nonlinear PK relationships were found from the doses of 540–900 mg of EC-MPS.展开更多
Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are no...Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are not quite sufficient. Poly-β-1–6-N-acetylglucosamine(PNAG),which is one of the important components in some biofilms, was used as the research subject,and the related mechanism of action triggered by different concentrations of the OH in plasma was studied using reactive molecular dynamics simulations. The results showed that OH radicals could not only trigger the hydrogen abstraction reaction leading to cleavage of the PNAG molecular structure, but undergo an OH addition reaction with PNAG molecules. New reaction pathways appeared in the simulations as the OH concentration increased, but the reaction efficiency first increased and then decreased. The simulation study in this paper could, to some extent, help elucidate the microscopic mechanism of the interaction between OH radicals in plasma and bacterial biofilms at the atomic level.展开更多
This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was c...This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was conducted to determine the plasma jet properties and wire temperature.The highest velocities inside the nozzle attachment were between 838 and 1178 m/s.The velocities of the jets at the apex were between 494 and 645 m/s for different gas flow rates.The studied plasma gas flow rates had no significant effect on the effective plasma jet length.It was shown that the plasma jet length can be estimated by numerical analysis using the temperature and velocity changes of the plasma jet over distance.It was observed that the powders produced were spherical without any satellites.As a result of this study,a plasma torch was developed and powder production was performed successfully by using relatively low torch power.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12274061,52072059,and 11774044)the Science and Technology Department of Sichuan Province(Grant Nos.2021JDJQ0015 and 2022ZYD0014)B.H.acknowledges the support by the National Natural Science Foundation of China(No.2230402).
文摘The discovery of nickelates superconductor creates exciting opportunities to unconventional superconductivity. However, its synthesis is challenging and only a few groups worldwide can obtain samples with zero-resistance. This problem becomes the major barrier for this field. From plume dynamics perspective, we found the synthesis of superconducting nickelates is a complex process and the challenge is twofold, i.e., how to stabilize an ideal infinite-layer structure Nd_(0.8)Sr_(0.2)NiO_(2), and then how to make Nd_(0.8)Sr_(0.2)NiO_(2) superconducting? The competition between perovskite Nd_(0.8)Sr_(0.2)NiO_(3) and Ruddlesden−Popper defect phase is crucial for obtaining infinite-layer structure. Due to inequivalent angular distributions of condensate during laser ablation, the laser energy density is critical to obtain phase-pure Nd_(0.8)Sr_(0.2)NiO_(3). However, for obtaining superconductivity, both laser energy density and substrate temperature are very important. We also demonstrate the superconducting Nd_(0.8)Sr_(0.2)NiO_(2) epitaxial film is very stable in ambient conditions up to 512 days. Our results provide important insights for fabrication of superconducting infinite-layer nickelates towards future device applications.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA25051000)the National Natural Science Foundation of China (Grant No.11574390)。
文摘This paper introduces and establishes a quasi-three-dimensional physical model of the interaction between a laser and a slab target.In contrast to previous one-dimensional analytical models,this paper innovatively fits the real laser conditions based on an isothermal,homogeneous expansion similarity solution of the ideal hydrodynamic equations.Using this simple model,the evolution law and analytical formulae for key parameters(e.g.,temperature,density and scale length)in the corona region under certain conditions are given.The analytical solutions agree well with the relevant results of computational hydrodynamics simulation.For constant laser irradiation,the analytical solutions provide a meaningful power-law scaling relationship.The model provides a set of mathematical and physical tools that give theoretical support for adjusting parameters in experiments.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12175036 and 11875104)。
文摘The discharge characteristics and mechanism of sub-millimeter pulsed dielectric barrier discharge in atmosphericpressure helium are investigated experimentally and theoretically, demonstrating that when the discharge gap distance is reduced from 1.00 mm to 0.20 mm, the discharge ignition time is reduced to approximately 40 ns and discharge intensity is enhanced in terms of the discharge optical emission intensity and density of the plasma species,(energetic electrons with energy above 8.40 e V). The simulated results show that as the discharge gap distance is further reduced to 0.10 mm,the number of energetic electrons decreases, which is attributable to the contraction of plasma bulk regime and reduction of electron density in the discharge bulk. Conversely, the proportion of energetic electrons to the total electrons in the discharge monotonically increases as the discharge gap distance is reduced from 1.00 mm to 0.10 mm. It is proposed that a gap distance of 0.12 mm is optimal to achieve a high concentration and proportion of energetic electrons in sub-millimeter pulsed atmosphere dielectric barrier discharge.
基金supported by the National Key R&D Program of China (No. 2017YFA0304203)the National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC)+3 种基金Changjiang Scholars and Innovative Research Team at the University of the Ministry of Education of China (No. IRT_17R70)National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108 and 627010407)111 Project (No. D18001)Fund for Shanxi (No. 1331KSC)
文摘In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.
文摘In this study,combining the single point diamond turning(SPDT)and spark plasma sintering(SPS),we achieved high-strength diffusion bonding of copper at an ultra-low temperature of 202℃(0.35 T_(m),T_(m):absolute temperature of the melting point).Additionally,the closure mechanism of interfacial micro-and nano-voids during the Cu-Cu SPS diffusion bonding is systematically revealed for the first time.For micro-voids,the pulsed current is found to induce additional diffusion flux and plastic deformation,thereby facilitating the void closure.Molecular dynamics(MD)simulation revealed that at the atomic scale,high-energy Cu atoms induced by the pulsed current can significantly promote the diffusion of low-energy atoms in their vicinity and accelerate the void closure.This study also proposes a novel“evaporation-deposition”nano-void closure mechanism for the previously unstudied nano-void closure process.The results show that the synergistic effect of the pulsed current and nanoscale surface rough-ness can significantly improve joint strength.At a low temperature of 405℃(0.5 T_(m)),on combining the computerized numerical control(CNC)turning and SPS diffusion bonding,the joint strength can reach 212 MPa,while that for the joint obtained by traditional hot pressing diffusion bonding at the same tem-perature is only 47 MPa.We obtained an ultra-high joint strength of 271 MPa using the combined process of SPDT and SPS diffusion bonding at an ultra-low temperature of 202℃(0.35 T_(m)),which is approximately 600℃ lower than the traditional diffusion bonding process temperature of 800℃(0.79 T_(m)).To sum up,this study provides a novel method and theoretical support for realizing low-temperature high-strength diffusion bonding.
基金supported by the youth fund of The First Affiliated Hospital of Zhengzhou University
文摘The aim of the research was to investigate the pharmacokinetics(PK) of enteric-coated mycophenolate sodium(EC-MPS) by quantification of the active metabolite of mycophenolic acid(MPA)after multiple escalating oral doses in Han kidney transplant recipients. A total of 28 Han postoperative kidney transplant recipients were given a multiple-dose of 540, 720 or 900 mg of EC-MPS two times a day in combination with tacrolimus for 6 days. Blood specimens were collected at each time point from0 to 12 h after EC-MPS administration. MPA plasma concentrations were measured by UPLC–UV. The relationship between the EC-MPS dose and its PK parameters was assessed. In the range from 540 to900 mg, C_(max) and AUC_(0–12h) did not increase with dose escalation. The AUC_(0–12h), C_(max), C_0 and T_(max) for the 540 720 and 900 mg doses were not significantly different, respectively(P 40.05). AUC_0–12 h and C_(max) were increased less than proportionally with increasing EC-MPS dose levels. Inter-individual variability in AUC_(0–12h), C_(max) and C_0 were considerable. Nonlinear PK relationships were found from the doses of 540–900 mg of EC-MPS.
基金supported by National Natural Science Foundation of China(Grant No.11675095)the Fundamental Research Funds of Shandong University(Grant No.2017JC017)。
文摘Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are not quite sufficient. Poly-β-1–6-N-acetylglucosamine(PNAG),which is one of the important components in some biofilms, was used as the research subject,and the related mechanism of action triggered by different concentrations of the OH in plasma was studied using reactive molecular dynamics simulations. The results showed that OH radicals could not only trigger the hydrogen abstraction reaction leading to cleavage of the PNAG molecular structure, but undergo an OH addition reaction with PNAG molecules. New reaction pathways appeared in the simulations as the OH concentration increased, but the reaction efficiency first increased and then decreased. The simulation study in this paper could, to some extent, help elucidate the microscopic mechanism of the interaction between OH radicals in plasma and bacterial biofilms at the atomic level.
基金financial supports from the Scientific and Technological Research Council of Turkey(No.215M895)。
文摘This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was conducted to determine the plasma jet properties and wire temperature.The highest velocities inside the nozzle attachment were between 838 and 1178 m/s.The velocities of the jets at the apex were between 494 and 645 m/s for different gas flow rates.The studied plasma gas flow rates had no significant effect on the effective plasma jet length.It was shown that the plasma jet length can be estimated by numerical analysis using the temperature and velocity changes of the plasma jet over distance.It was observed that the powders produced were spherical without any satellites.As a result of this study,a plasma torch was developed and powder production was performed successfully by using relatively low torch power.