In this paper,we present a review of the current literature on distributed(or partially decentralized) control of chemical process networks.In particular,we focus on recent developments in distributed model predictive...In this paper,we present a review of the current literature on distributed(or partially decentralized) control of chemical process networks.In particular,we focus on recent developments in distributed model predictive control,in the context of the specific challenges faced in the control of chemical process networks.The paper is concluded with some open problems and some possible future research directions in the area.展开更多
Static “self-optimising” control is an important concept, which provides a link between static optimisation and control. According to the concept, a dynamic control system could be configured in such a way that when...Static “self-optimising” control is an important concept, which provides a link between static optimisation and control. According to the concept, a dynamic control system could be configured in such a way that when a set of certain variables are maintained at their setpoints, the overall process operation is automatically optimal or near optimal at steady-state in the presence of disturbances. A novel approach using constrained gradient control to achieve “self-optimisation” has been proposed by Cao. However, for most process plants, the information required to get the gradient measure may not be available in real-time. In such cases, controlled variable selection has to be carried out based on measurable candidates. In this work, the idea of direct gradient control has been extended to controlled variable selection based on gradient sensitivity analysis (indirect gradient control). New criteria, which indicate the sensitivity of the gradient function to disturbances and implementation errors, have been derived for selection. The particular case study shows that the controlled variables selected by gradient sensitivity measures are able to achieve near optimal performance.展开更多
Dimethyl carbonate is an eco-friendly essential chemical that can be sustainably produced from CO_(2),which is available from carbon capture activities or can even be captured from the air.The rapid increase in dimeth...Dimethyl carbonate is an eco-friendly essential chemical that can be sustainably produced from CO_(2),which is available from carbon capture activities or can even be captured from the air.The rapid increase in dimethyl carbonate demand is driven by the fast growth of polycarbonates,solvent,pharmaceutical,and lithium-ion battery industries.Dimethyl carbonate can be produced from CO_(2)through various chemical pathways,but the most convenient route reported is the indirect alcoholysis of urea.Previous research used techniques such as heat integration and reactive distillation to reduce the energy use and costs,but the use of an excess of methanol in the trans-esterification step led to an energy intensive extractive distillation required to break the dimethyl carbonate-methanol azeotrope.This work shows that the production of dimethyl carbonate by indirect alcoholysis of urea can be improved by using an excess of propylene carbonate(instead of an excess of methanol),a neat feat that we showed it requires only 2.64 kW·h·kg^(-1) dimethyl carbonate in a reaction-separation-recycle process,and a reactive distillation column that effectively replaces two conventional distillation columns and the reactor for dimethyl carbonate synthesis.Therefore,less equipment is required,the methanol-dimethyl carbonate azeotrope does not need to be recycled,and the overall savings are higher.Moreover,we propose the use of a reactive distillation column in a heat integrated process to obtain high purity dimethyl carbonate(>99.8 wt-%).The energy requirement is reduced by heat integration to just 1.25 kW·h·kg^(-1) dimethyl carbonate,which is about 52%lower than the reaction-separation-recycle process.To benefit from the energy savings,the dynamics and control of the process are provided for10%changes in the nominal rate of 32 ktpy dimethyl carbonate,and for uncertainties in reaction kinetics.展开更多
Manufacturing plants are increasingly complex and integrated, requiring control systems able to identify the interactions between the various operating units. Production planning and control design of a process are to...Manufacturing plants are increasingly complex and integrated, requiring control systems able to identify the interactions between the various operating units. Production planning and control design of a process are tools that, if combined, bring many economic benefits to the processes since they aim to identify and maintain optimal decision operations to a system. This work uses such integration between production planning and plantwide control to propose a control system for the Williams-Otto plant from the definition of the operating optimal point for coordinated decentralized optimization, in which the original optimization problem decomposition into smaller coordinated problems ensure that the found local optimum also meets the requirements of the global system. The results for decentralized optimization are satisfactory and very similar to the global optimum problem and to the control system response proposed based on the optimal obtained. It is effective taking smooth actions, working with (economic) optimal set points (economically) of operation. The unification of production planning techniques and plantwide control techniques is an effective tool for the control system design for entire plants.展开更多
基金supported by Australian Research Council(ARC)Discovery Project(No.DP130103330)
文摘In this paper,we present a review of the current literature on distributed(or partially decentralized) control of chemical process networks.In particular,we focus on recent developments in distributed model predictive control,in the context of the specific challenges faced in the control of chemical process networks.The paper is concluded with some open problems and some possible future research directions in the area.
基金supported by the EPSRC UK under grant GR/R57324.
文摘Static “self-optimising” control is an important concept, which provides a link between static optimisation and control. According to the concept, a dynamic control system could be configured in such a way that when a set of certain variables are maintained at their setpoints, the overall process operation is automatically optimal or near optimal at steady-state in the presence of disturbances. A novel approach using constrained gradient control to achieve “self-optimisation” has been proposed by Cao. However, for most process plants, the information required to get the gradient measure may not be available in real-time. In such cases, controlled variable selection has to be carried out based on measurable candidates. In this work, the idea of direct gradient control has been extended to controlled variable selection based on gradient sensitivity analysis (indirect gradient control). New criteria, which indicate the sensitivity of the gradient function to disturbances and implementation errors, have been derived for selection. The particular case study shows that the controlled variables selected by gradient sensitivity measures are able to achieve near optimal performance.
基金The financial support of the European Commission through the European Regional Development Fund and of the Romanian state budget,under the grant agreement POC P-37-449(acronym ASPiRE)is gratefully acknowledgedAAK gratefully acknowledges the Royal Society Wolfson Research Merit Award(Grant No.WM170003).
文摘Dimethyl carbonate is an eco-friendly essential chemical that can be sustainably produced from CO_(2),which is available from carbon capture activities or can even be captured from the air.The rapid increase in dimethyl carbonate demand is driven by the fast growth of polycarbonates,solvent,pharmaceutical,and lithium-ion battery industries.Dimethyl carbonate can be produced from CO_(2)through various chemical pathways,but the most convenient route reported is the indirect alcoholysis of urea.Previous research used techniques such as heat integration and reactive distillation to reduce the energy use and costs,but the use of an excess of methanol in the trans-esterification step led to an energy intensive extractive distillation required to break the dimethyl carbonate-methanol azeotrope.This work shows that the production of dimethyl carbonate by indirect alcoholysis of urea can be improved by using an excess of propylene carbonate(instead of an excess of methanol),a neat feat that we showed it requires only 2.64 kW·h·kg^(-1) dimethyl carbonate in a reaction-separation-recycle process,and a reactive distillation column that effectively replaces two conventional distillation columns and the reactor for dimethyl carbonate synthesis.Therefore,less equipment is required,the methanol-dimethyl carbonate azeotrope does not need to be recycled,and the overall savings are higher.Moreover,we propose the use of a reactive distillation column in a heat integrated process to obtain high purity dimethyl carbonate(>99.8 wt-%).The energy requirement is reduced by heat integration to just 1.25 kW·h·kg^(-1) dimethyl carbonate,which is about 52%lower than the reaction-separation-recycle process.To benefit from the energy savings,the dynamics and control of the process are provided for10%changes in the nominal rate of 32 ktpy dimethyl carbonate,and for uncertainties in reaction kinetics.
文摘Manufacturing plants are increasingly complex and integrated, requiring control systems able to identify the interactions between the various operating units. Production planning and control design of a process are tools that, if combined, bring many economic benefits to the processes since they aim to identify and maintain optimal decision operations to a system. This work uses such integration between production planning and plantwide control to propose a control system for the Williams-Otto plant from the definition of the operating optimal point for coordinated decentralized optimization, in which the original optimization problem decomposition into smaller coordinated problems ensure that the found local optimum also meets the requirements of the global system. The results for decentralized optimization are satisfactory and very similar to the global optimum problem and to the control system response proposed based on the optimal obtained. It is effective taking smooth actions, working with (economic) optimal set points (economically) of operation. The unification of production planning techniques and plantwide control techniques is an effective tool for the control system design for entire plants.