The objectives for this study were to determine changes in soil organic carbon(SOC)components and water-stable aggregates for soil profi les from diff erent ages of plantations of Liriodendron chinense and to clarify ...The objectives for this study were to determine changes in soil organic carbon(SOC)components and water-stable aggregates for soil profi les from diff erent ages of plantations of Liriodendron chinense and to clarify which organic carbon component is more closely associated with the formation and stability of soil aggregates.Three layers of soil(depths 0–20 cm,20–40 cm,40–60 cm)were collected from young,half-mature and mature stages of L.chinense.SOC,readily oxidizable organic carbon,chemically stable organic carbon and aggregate composition were determined.Intermediate stable organic carbon,the microbial quotient and aggregate stability(mean weight diameter)were calculated.SOC and aggregate stability in the L.chinense plantation did not increase linearly with an increase in L.chinense age;rather,they fi rst decreased,then increased with increasing age of L.chinense.The microbial quotient had a negative eff ect on the level of organic carbon and the stability of aggregates,while chemically stable organic carbon had a positive eff ect,which explained 55.0%and 19.3%of the total variation,respectively(P<0.01).Therefore,more attention should be paid of these two indicators in the future.展开更多
Coastal zones comprising important intertidal tropical and subtropical ecosystems are characterized by high productivity, diversity and unique zonation of various plant and animal communities. The comparison of some s...Coastal zones comprising important intertidal tropical and subtropical ecosystems are characterized by high productivity, diversity and unique zonation of various plant and animal communities. The comparison of some selected physicochemical soil properties viz. texture, particle density, moisture content, pH, organic carbon and total nitrogen between planted site (Telir char) and barren site (Boyar char) has been investigated at surface (0-10 cm) and subsurface (10-45 cm) soil across three different land strips viz. inland, middle part and sea side in Lakshmipur coast of Bangladesh. Sand particles in the soil were lower in planted site than barren site. The reverse trend was found in case of both silt and clay percentage. Coastal afforestation had a significant effect on soil binding process since a common trend of increment in soil particle density was noticed. Maximum increment (20.43% to 23.30%) in soil moisture content was recorded in surface soil across the seaside while at subsurface soil both across the middle part (19.53% to 22.30%) and sea side (20.19% to 22.96%). Moreover, the highest reduction in soil pH was recorded at surface soil (7.27 to 6.60) across the sea side and subsurface soil (7.16 to 6.67) in inland due to the influence of coastal plantation. Across all the land strips and the soil depths studied, soil organic carbon was higher in planted site than in barren site with only exception at subsurface soil in the middle part (0.50% in both sites). Total soil nitrogen in the study area was increased at both depths due to forestation with the highest increment in the inland at both surface and subsurface soil.展开更多
I developed a weeding-duration model for Sakhalin fir (Abies sachalinensis (Fr. Schmidt) Masters) plantations that employs a generalized linear model. The number of years following planting that weeding is necessa...I developed a weeding-duration model for Sakhalin fir (Abies sachalinensis (Fr. Schmidt) Masters) plantations that employs a generalized linear model. The number of years following planting that weeding is necessary is the response variable, and elevation, slope steepness, maximum snow depth, annual precipitation, geology, soil, site index, slope aspect, and vegetation type are explanatory variables. Among the explanatory variables, geology, soil, slope aspect, and vegetation type are categorical data. A Poisson distribution is assumed for the response variable, with a log-link function. Elevation, slope steepness, maximum snow depth, annual precipitation, site index, and vegetation type had a significant effect on weeding duration. Among the eight models with the smallest Akaike information criterion (AIC), I chose the model with no multicollinearity among the explanatory variables. The weeding-duration model includes site index, maximum snow depth, slope steepness (angle) and vegetation type as explanatory variables; elevation and annual precipitation were not included in the selected model because of multicollinearity with maximum snow depth. This model is useful for cost-benefit analyses of afforestation or reforestation with Abies sachalinensis.展开更多
Trees species have different effects on soil properties and nutrients. Plantation as a management strategy for soil productivity retention and the prevention of destruction can be effective in the continuity of forest...Trees species have different effects on soil properties and nutrients. Plantation as a management strategy for soil productivity retention and the prevention of destruction can be effective in the continuity of forest productivity. After 21 years, the effects of the maple(Acer velutinum Bioss.), oak(Quercus castaneifolia C. A. Mey.), and red pine(Pinus brutia Ten.) stands on soil fertility were assessed in the Sari region(northern Iran). Soil was sampled at depths of 0-10, 10-20, 20-30, and 30-40 cm at all stands using a core soil sampler with an 81 cm2 cross section. Soil texture, pH, organic carbon(C), total nitrogen(N), available phosphorus(P), potassium(K), calcium(Ca), and magnesium(Mg) for all samples were measured in the laboratory. Our findings showed that the planted stands significantly affected soil physicochemical properties. Statistical comparisons revealed that the highest and lowest levels of N, P, K, Ca, and Mg in soil occurred in the maple and red pine stands, respectively. Measurements of soil fertility showed that fertility decreased in relation to increased soil depth, with significant differences depending on soil depth. Our results suggest that to rehabilitate degraded natural forests, at least in northern Iran, the plantation of suitable native broad-leaved species can be recommended for forestation plan management.展开更多
We estimated the growth volume of artificially reforested Pinus densiflora in a post-fire area on three different contour conditions by comparing and analyzing the vertical and horizontal distributions of below-ground...We estimated the growth volume of artificially reforested Pinus densiflora in a post-fire area on three different contour conditions by comparing and analyzing the vertical and horizontal distributions of below-ground roots on each contour. The main roots at the south-facing slope (SS) developed in a long and straight form, and those on the north-facing slope (NS) in a twisted form. The side roots developed more than the main roots on the Ridge. The depth of taproots decreased in the following order: SS > NS > Ridge. The roots on the SS developed in a pile-form root structure whereas those in the Ridge and NS developed concentrically near the root collar. The amount of root development decreased in the following order: SS > NS > Ridge. The ratio of fine roots from the whole-root development decreased in the following order: Ridge > SS > NS. These results can guide considerations of growth differences according to the planting contour conditions for future establishment of P. densiflora artificial plantations.展开更多
基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The objectives for this study were to determine changes in soil organic carbon(SOC)components and water-stable aggregates for soil profi les from diff erent ages of plantations of Liriodendron chinense and to clarify which organic carbon component is more closely associated with the formation and stability of soil aggregates.Three layers of soil(depths 0–20 cm,20–40 cm,40–60 cm)were collected from young,half-mature and mature stages of L.chinense.SOC,readily oxidizable organic carbon,chemically stable organic carbon and aggregate composition were determined.Intermediate stable organic carbon,the microbial quotient and aggregate stability(mean weight diameter)were calculated.SOC and aggregate stability in the L.chinense plantation did not increase linearly with an increase in L.chinense age;rather,they fi rst decreased,then increased with increasing age of L.chinense.The microbial quotient had a negative eff ect on the level of organic carbon and the stability of aggregates,while chemically stable organic carbon had a positive eff ect,which explained 55.0%and 19.3%of the total variation,respectively(P<0.01).Therefore,more attention should be paid of these two indicators in the future.
文摘Coastal zones comprising important intertidal tropical and subtropical ecosystems are characterized by high productivity, diversity and unique zonation of various plant and animal communities. The comparison of some selected physicochemical soil properties viz. texture, particle density, moisture content, pH, organic carbon and total nitrogen between planted site (Telir char) and barren site (Boyar char) has been investigated at surface (0-10 cm) and subsurface (10-45 cm) soil across three different land strips viz. inland, middle part and sea side in Lakshmipur coast of Bangladesh. Sand particles in the soil were lower in planted site than barren site. The reverse trend was found in case of both silt and clay percentage. Coastal afforestation had a significant effect on soil binding process since a common trend of increment in soil particle density was noticed. Maximum increment (20.43% to 23.30%) in soil moisture content was recorded in surface soil across the seaside while at subsurface soil both across the middle part (19.53% to 22.30%) and sea side (20.19% to 22.96%). Moreover, the highest reduction in soil pH was recorded at surface soil (7.27 to 6.60) across the sea side and subsurface soil (7.16 to 6.67) in inland due to the influence of coastal plantation. Across all the land strips and the soil depths studied, soil organic carbon was higher in planted site than in barren site with only exception at subsurface soil in the middle part (0.50% in both sites). Total soil nitrogen in the study area was increased at both depths due to forestation with the highest increment in the inland at both surface and subsurface soil.
文摘I developed a weeding-duration model for Sakhalin fir (Abies sachalinensis (Fr. Schmidt) Masters) plantations that employs a generalized linear model. The number of years following planting that weeding is necessary is the response variable, and elevation, slope steepness, maximum snow depth, annual precipitation, geology, soil, site index, slope aspect, and vegetation type are explanatory variables. Among the explanatory variables, geology, soil, slope aspect, and vegetation type are categorical data. A Poisson distribution is assumed for the response variable, with a log-link function. Elevation, slope steepness, maximum snow depth, annual precipitation, site index, and vegetation type had a significant effect on weeding duration. Among the eight models with the smallest Akaike information criterion (AIC), I chose the model with no multicollinearity among the explanatory variables. The weeding-duration model includes site index, maximum snow depth, slope steepness (angle) and vegetation type as explanatory variables; elevation and annual precipitation were not included in the selected model because of multicollinearity with maximum snow depth. This model is useful for cost-benefit analyses of afforestation or reforestation with Abies sachalinensis.
文摘Trees species have different effects on soil properties and nutrients. Plantation as a management strategy for soil productivity retention and the prevention of destruction can be effective in the continuity of forest productivity. After 21 years, the effects of the maple(Acer velutinum Bioss.), oak(Quercus castaneifolia C. A. Mey.), and red pine(Pinus brutia Ten.) stands on soil fertility were assessed in the Sari region(northern Iran). Soil was sampled at depths of 0-10, 10-20, 20-30, and 30-40 cm at all stands using a core soil sampler with an 81 cm2 cross section. Soil texture, pH, organic carbon(C), total nitrogen(N), available phosphorus(P), potassium(K), calcium(Ca), and magnesium(Mg) for all samples were measured in the laboratory. Our findings showed that the planted stands significantly affected soil physicochemical properties. Statistical comparisons revealed that the highest and lowest levels of N, P, K, Ca, and Mg in soil occurred in the maple and red pine stands, respectively. Measurements of soil fertility showed that fertility decreased in relation to increased soil depth, with significant differences depending on soil depth. Our results suggest that to rehabilitate degraded natural forests, at least in northern Iran, the plantation of suitable native broad-leaved species can be recommended for forestation plan management.
基金supported by a research Grant from Yeungnam University in 2015the National Research Foundation of Korea Grant(NRF No.2016M3C1B6929073)funded by the Ministry of Science,ICT and Future Planning of the Republic of Korea
文摘We estimated the growth volume of artificially reforested Pinus densiflora in a post-fire area on three different contour conditions by comparing and analyzing the vertical and horizontal distributions of below-ground roots on each contour. The main roots at the south-facing slope (SS) developed in a long and straight form, and those on the north-facing slope (NS) in a twisted form. The side roots developed more than the main roots on the Ridge. The depth of taproots decreased in the following order: SS > NS > Ridge. The roots on the SS developed in a pile-form root structure whereas those in the Ridge and NS developed concentrically near the root collar. The amount of root development decreased in the following order: SS > NS > Ridge. The ratio of fine roots from the whole-root development decreased in the following order: Ridge > SS > NS. These results can guide considerations of growth differences according to the planting contour conditions for future establishment of P. densiflora artificial plantations.