期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Phenolic Acids in Plant-Soil-Microbe System: A Review 被引量:13
1
作者 LI SHOUTIAN, ZHOU JIANMIN, WANG HUOYAN and CHEN XIAOQIN Institute of Soil Science, the Chinese Academy of Sciences, P. O. Box 821, Nanjing S10008 (China) 《Pedosphere》 SCIE CAS CSCD 2002年第1期1-14,共14页
Phenolic acids are very common compounds in pedosphere. Theobjective of this review was to summarize the current knowledge ofthe behaviors of phenolic acids in plant-soil microbe system. Whenphenolic acids originated ... Phenolic acids are very common compounds in pedosphere. Theobjective of this review was to summarize the current knowledge ofthe behaviors of phenolic acids in plant-soil microbe system. Whenphenolic acids originated form leaching, decomposition and exudationof living and dead plant tissues enter soils, they can reactphysiochemically with soil particle surfaces and/or incorporate intohumic matter. Phenolic acids desorbed from soil particle surfaces andremained in solution phase can be utilized by microbe as carbonsources and absorbed by plants. 展开更多
关键词 allelopathic activity phenlic acids plant-soil-microbe system
下载PDF
土壤溶解性有机碳对气候变暖的响应研究进展
2
作者 秦文宽 李晓杰 +1 位作者 王旭东 朱彪 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期758-766,共9页
针对土壤溶解性有机碳(DOC)特性及其在气候变暖背景下的响应机制这一土壤碳循环研究的关键问题进行综述。首先阐述土壤DOC的特性,并总结其采集和测定方法。土壤DOC主要来源于土壤有机碳的溶解、植物根系和微生物分泌物与残体转化等过程... 针对土壤溶解性有机碳(DOC)特性及其在气候变暖背景下的响应机制这一土壤碳循环研究的关键问题进行综述。首先阐述土壤DOC的特性,并总结其采集和测定方法。土壤DOC主要来源于土壤有机碳的溶解、植物根系和微生物分泌物与残体转化等过程,其浓度和组成往往随土层深度和时间发生变化。多种采样方法(如负压法)与分析手段(如傅里叶变换离子共振回旋质谱仪)用于探讨土壤DOC对增温的响应及其机制。进一步梳理有关植物、微生物及土壤性质对土壤DOC特性的影响及其机制的文献,认为增温不仅能直接改变土壤DOC的浓度,还可以通过影响植物、微生物群落以及土壤理化性质等因素,间接地改变土壤DOC的特性。未来的研究中应加强对土壤溶解性有机碳的土层迁移与时间动态的关注,以便完善土壤碳模型,提升未来气候变暖情景下全球碳循环过程变化的预测精度。 展开更多
关键词 土壤溶解性有机碳 土壤碳循环 植物–土壤–微生物 气候变暖
下载PDF
Effects of Elevated CO_2 and Drought on Plant Physiology, Soil Carbon and Soil Enzyme Activities 被引量:5
3
作者 WANG Yuhui YAN Denghua +2 位作者 WANG Junfeng DING Yi SONG Xinshan 《Pedosphere》 SCIE CAS CSCD 2017年第5期846-855,共10页
Global climate models have indicated high probability of drought occurrences in the coming future decades due to the impacts of climate change caused by a mass release of CO2. Thus, climate change regarding elevated a... Global climate models have indicated high probability of drought occurrences in the coming future decades due to the impacts of climate change caused by a mass release of CO2. Thus, climate change regarding elevated ambient CO2 and drought may consequently affect the growth of crops. In this study, plant physiology, soil carbon, and soil enzyme activities were measured to investigate the impacts of elevated C02 and drought stress on a Stagn[c Anthrosol planted with soybean (Glycine ma,z). Treatments of two CO2 levels, three soil moisture levels, and two soil cover types were established. The results indicated that elevated CO2 and drought stress significantly affected plant physiology. The inhibition of plant physiology by drought stress was mediated via prompted photosynthesis and water use efficiency under elevated CO2 conditions. Elevated CO2 resulted in a longer retention time of dissolved organic carbon (DOC) in soil, probably by improving the soil water effectiveness for organic decomposition and mineralization. Drought stress significantly decreased C:N ratio and microbial biomass carbon (MBC), but the interactive effects of drought stress and CO2 on them were not significant. Elevated CO2 induced an increase in invertase and catalase activities through stimulated plant root exudation. These results suggested that drought stress had significant negative impacts on plant physiology, soil carbon, and soil enzyme activities, whereas elevated CO2 and plant physiological feedbacks indirectly ameliorated these impacts. 展开更多
关键词 CATALASE drought stress INVERTASE plant growth plant-soil-microbe system soil C:N ratio water use efficiency
原文传递
Effects of nitrogen addition on plant-soil-microbe stoichio-metry characteristics of different functional group species in Bothriochloa ischemum community
4
作者 ZiWen Zhao YanLi Qin +3 位作者 Yang Wu WenJing Chen Sha Xue GuoBin Liu 《Soil Ecology Letters》 CAS 2022年第4期362-375,共14页
Nitrogen(N)deposition,the source of N input into terrestrial ecosystems,is exhibiting an increasingly serious impact on the biogeochemical cycle and functional stability of ecosystems.Grasslands are an important compo... Nitrogen(N)deposition,the source of N input into terrestrial ecosystems,is exhibiting an increasingly serious impact on the biogeochemical cycle and functional stability of ecosystems.Grasslands are an important component of terrestrial ecosystems and play a key role in maintaining terrestrial ecosystem balance.Therefore,it is critical to understand the effects of nitrogen addition on grassland ecosystems.We conducted gradientN addition experiments(0,3,6,and 9 g N m^(-2)2 y^(-1))for threeyears ingrassland communities with similar site conditions.We utilized four typical herbaceous plants,including the dominant species Bothriochloa ischemum(B.ischemum)and companion species Stipa bungeana(S.bungeana),Artemisia gmelinii(A.gmelinii),and Cleistogenes squarrosa(C.squarrosa),to explore how different plant-soil-microbe systems respond to N addition.Stoichiometric homeostasis analysis demonstrated that both plants and microbes were strictly homeostatic.However,the companion species were found to be more susceptible to P dominant species.Furthermore,aggravated overlap in stoichiometric niches between plant species were observed at the N6 and N9 levels.Vector analysis indicated that the vector angle was>45°regardlessof plant species and N levels,suggesting that there was a strong Plimitation in the rhizosphere microbial community.Variation partitioning analysis revealed that the Composite roots exhibited a greater effect(explaining 34.7% of the variation)on the rhizosphere microbes than on the Gramineae,indicating that there may be more intense nutrient competition in its rhizosphere.Ingeneral,the effects of N addition on species were different a cross functional groups,with a significant positive effect on the Gramineae(B.ischemum,S.bungeana,and C.squarrosa)and a significant negative effecton the Compositae(A.gmelinii),which should be fully considered in the future ecological management and restoration. 展开更多
关键词 N addition Ecological stoichiometry Stoichiometric homeostasis Nutrient limitation Stoichiometric niche plant-soil-microbe system
原文传递
植物营养学科发展报告 被引量:11
5
作者 袁力行 申建波 +1 位作者 崔振岭 张福锁 《农学学报》 2018年第1期48-52,共5页
植物营养学是研究植物吸收、转运和利用营养物质规律,探讨植物与外界环境之间交换营养物质与能量的科学,是支撑农业高产、高效、优质、生态安全及可持续发展的重要基础学科之一。近二十年来,中国植物营养学研究秉承"学科交叉、瞄... 植物营养学是研究植物吸收、转运和利用营养物质规律,探讨植物与外界环境之间交换营养物质与能量的科学,是支撑农业高产、高效、优质、生态安全及可持续发展的重要基础学科之一。近二十年来,中国植物营养学研究秉承"学科交叉、瞄准前沿、强化基础、应用优先、立地顶天"的发展理念,在植物营养生物学、植物-土壤-微生物互作、养分资源管理、养分再利用与污染控制、以及可持续农业研究等诸多领域取得了显著进展。植物营养学科未来将积极应对中国粮食安全、农产品品质安全、资源与生态环境安全的重大挑战,为"乡村振兴、绿色发展"的国家重大需求做出重要贡献。 展开更多
关键词 植物营养 植物-土壤-环境 养分高效利用 资源与环境 绿色发展
下载PDF
植物根圈微生物群落与功能特异性机制研究 被引量:7
6
作者 丁晶 俞慎 《生态环境学报》 CSCD 北大核心 2017年第5期902-910,共9页
植物-土壤微生物交互作用在土壤养分循环、碳固存和温室气体排放等生态过程中发挥着重要作用,而植物源有机物输入被认为是植物-微生物交互作用的纽带。根圈土壤微生物在群落结构和功能上与根圈外土壤差异显著,并存在一定的植物群落特异... 植物-土壤微生物交互作用在土壤养分循环、碳固存和温室气体排放等生态过程中发挥着重要作用,而植物源有机物输入被认为是植物-微生物交互作用的纽带。根圈土壤微生物在群落结构和功能上与根圈外土壤差异显著,并存在一定的植物群落特异性。植物源有机物的高度可利用性对土壤微生物具有复杂的影响,改变着土壤生态过程。因此,揭示植物源有机物的输入对土壤微生物的影响有助于深化对植物-土壤微生物反馈作用的认识,同时为养分循环调控、肥料施用时效、作物增产和温室气体排放及生态平衡维持提供理论支持。基于国内外最新相关研究进展,综述了两大类植物源有机物(根际沉积和凋落物)的组成和输入时间对土壤微生物群落结构和特定功能(以氮循环为例)的影响机制;探讨了稳定性同位素示踪技术、分子探针技术和宏基因组学等研究方法在植物-土壤微生物交互作用中的综合应用;总结了植物生命周期内植物源有机物化学组成和输入时空差异对植物特异性土壤微生物群落的诱导机制。植物源有机物输入对微生物群落结构和功能具有重要影响,不但显著提高优势微生物群落生物量、改变微生物群落结构及相关功能、调控特定土壤微生物活性,并且其化学性质多样性决定了土壤微生物群落植物特异性。因此,植物源有机物输入是驱动植物根圈特异微生物群落结构演替与功能演变的重要因子。 展开更多
关键词 植物源有机物 根际沉积 凋落物 植物-土壤微生物交互作用
下载PDF
中国典型生态脆弱区生态化学计量学研究进展 被引量:35
7
作者 陈云 李玉强 +1 位作者 王旭洋 牛亚毅 《生态学报》 CAS CSCD 北大核心 2021年第10期4213-4225,共13页
在人类活动和自然环境变化的相互作用下,生态脆弱区生态系统随之变迁,荒漠化、盐碱化、水土流失、植被生产力下降等是生态脆弱区面临的重要问题。生态化学计量学作为当前多学科交叉研究的热点领域,强调从生态系统能量与元素平衡角度,揭... 在人类活动和自然环境变化的相互作用下,生态脆弱区生态系统随之变迁,荒漠化、盐碱化、水土流失、植被生产力下降等是生态脆弱区面临的重要问题。生态化学计量学作为当前多学科交叉研究的热点领域,强调从生态系统能量与元素平衡角度,揭示元素生物地球化学循环和生态系统对环境变化的调控机制。为了促进对生态脆弱区碳(C)、氮(N)、磷(P)生态化学计量的深入理解,本文重点总结了近年来有关我国典型生态脆弱区植物、凋落物、土壤和土壤微生物量C、N、P生态化学计量及其对环境变化响应的研究成果,并展望未来研究方向,以期促进生态化学计量学的发展和生态脆弱区生态保护与恢复研究。研究表明,植物-凋落物-土壤-土壤微生物系统C、N、P化学计量具有较强相关性,并受土壤因子、气候因子、生物因子和人类活动的显著影响。在生态脆弱区,我国北方荒漠及荒漠化地区由于较高的N∶P比值易受P限制,而青藏高原脆弱区、西南岩溶石漠化地区和黄土高原脆弱区等生态脆弱区更易受N限制;随着植被恢复,养分限制逐渐由N限制向P限制转变。生态脆弱区相对较低的养分含量和C∶N∶P比值或许可在一定程度上解释植被生产力较低的原因,而具有较高N、P化学计量内稳性的植物在贫瘠环境中具有较强竞争力和更高稳定性。今后可加强多尺度、不同生态系统植物-凋落物-土壤-土壤微生物系统生态化学计量和长期、多因子交互控制实验的研究。 展开更多
关键词 生态脆弱区 生态化学计量学 环境变化 植物-凋落物-土壤-微生物系统
下载PDF
西藏地区C·N·P生态化学计量学研究进展
8
作者 陈茹岚 常博然 +1 位作者 朱静丹 薛会英 《安徽农业科学》 CAS 2024年第8期15-19,31,共6页
生态化学计量学是从生态系统能量和元素平衡的角度,揭示元素在生物地球化学循环以及生态系统对环境变化的调控机制。总结近年来在我国西藏地区针对植物、凋落物、土壤和土壤微生物量C、N、P生态化学计量及其对环境变化的响应方面的研究... 生态化学计量学是从生态系统能量和元素平衡的角度,揭示元素在生物地球化学循环以及生态系统对环境变化的调控机制。总结近年来在我国西藏地区针对植物、凋落物、土壤和土壤微生物量C、N、P生态化学计量及其对环境变化的响应方面的研究成果,并对未来的研究方向进行展望。相关研究表明,植物-凋落物-土壤-土壤微生物系统C、N、P化学计量具有较强相关性,并受生物因子、非生物因子和人类活动的显著影响。植物生长主要受N元素的限制,C、P极度下降时N含量升高,植物通过自我调节能力表现出较强的竞争力和较高的内稳性;土壤养分表现出一定的“表聚性”效应;受海拔高度和温度的影响,微生物对凋落物的分解速率下降,可在一定程度上解释高海拔地区土壤肥力较贫瘠的原因。关于植物-凋落物-土壤-土壤微生物系统生态化学计量学的研究,今后可在多尺度、不同生态系统下进行长期的、多因子交互控制试验的研究。 展开更多
关键词 生态化学计量学 植物-凋落物-土壤-土壤微生物系统 影响因素 西藏
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部