Since its discovery as a bacterial adaptive immune system and its development for genome editing in eukaryotes,the CRISPR technology has revolutionized plant research and precision crop breeding.The CRISPR toolbox hol...Since its discovery as a bacterial adaptive immune system and its development for genome editing in eukaryotes,the CRISPR technology has revolutionized plant research and precision crop breeding.The CRISPR toolbox holds great promise in the production of crops with genetic disease resistance to increase agriculture resilience and reduce chemical crop protection with a strong impact on the environment and public health.In this review,we provide an extensive overviewon recent breakthroughs in CRISPR technology,including the newly developed prime editing system that allows precision gene editing in plants.We present how each CRISPR tool can be selected for optimal use in accordance with its specific strengths and limitations,and illustrate how the CRISPR toolbox can foster the development of genetically pathogen-resistant crops for sustainable agriculture.展开更多
Phosphoinositides are important regulatory membrane lipids,with a role in plant development and cellular function.Emerging evidence indicates that phosphoinositides play crucial roles in plant defence and are also uti...Phosphoinositides are important regulatory membrane lipids,with a role in plant development and cellular function.Emerging evidence indicates that phosphoinositides play crucial roles in plant defence and are also utilized by pathogens for infection.In this review,we highlight the role of phosphoinositides in plant-pathogen interaction and the implication of this remarkable convergence in the battle against plant diseases.展开更多
Vesicle trafficking is an essential cellular process upon which many physiological processes of eukaryotic cells rely.It is usually the‘language’of communication among the components of the endomembrane system withi...Vesicle trafficking is an essential cellular process upon which many physiological processes of eukaryotic cells rely.It is usually the‘language’of communication among the components of the endomembrane system within a cell,between cells and between a cell and its external environment.Generally,cells have the potential to internalize membrane-bound vesicles from external sources by endocytosis.Plants constantly interact with both mutualistic and pathogenic microbes.A large part of this interaction involves the exchange of transport vesicles between the plant cells and the microbes.Usually,in a pathogenic interaction,the pathogen releases vesicles containing bioactive molecules that can modulate the host immunity when absorbed by the host cells.In response to this attack,the host cells similarly mobilize some vesicles containing pathogenesis-related compounds to the pathogen infection site to destroy the pathogen,prevent it from penetrating the host cell or annul its influence.In fact,vesicle trafficking is involved in nearly all the strategies of phytopathogen attack subsequent plant immune responses.However,this field of plant-pathogen interaction is still at its infancy when narrowed down to plant-fungal pathogen interaction in relation to exchange of transport vesicles.Herein,we summarized some recent and novel findings unveiling the involvement of transport vesicles as a crosstalk in plant-fungal phytopathogen interaction,discussed their significance and identified some knowledge gaps to direct future research in the field.The roles of vesicles trafficking in the development of both organisms are also established.展开更多
The past few years have witnessed significant progress in emerging disease detection techniques foraccurately and rapidly tracking rice diseases and predicting potential solutions. In this review we focuson image proc...The past few years have witnessed significant progress in emerging disease detection techniques foraccurately and rapidly tracking rice diseases and predicting potential solutions. In this review we focuson image processing techniques using machine learning (ML) and deep learning (DL) models related tomulti-scale rice diseases. Furthermore, we summarize applications of different detection techniques,including genomic, physiological, and biochemical approaches. In addition, we also present the state-ofthe-art in contemporary optical sensing applications of pathogen–plant interaction phenotypes. Thisreview serves as a valuable resource for researchers seeking effective solutions to address the challenges of high-throughput data and model recognition for early detection of issues affecting rice cropsthrough ML and DL models.展开更多
Seed exudates influence the behavior of soil organisms,but howthis occurs remains unclear,particularly for multicellular animals.Here we show that compounds associated with Arabidopsis seed-coat mucilage regulate the ...Seed exudates influence the behavior of soil organisms,but howthis occurs remains unclear,particularly for multicellular animals.Here we show that compounds associated with Arabidopsis seed-coat mucilage regulate the behavior of soil-borne animals,specifically root-knot nematodes (RKNs).Infective RKN J2 larvae actively travel toward Arabidopsis seeds through chemotaxis.Analysis of Arabidopsis mucilage mutants demonstrated that the attraction of RKNs toArabidopsis seeds requires the synthesis and extrusion of.seed-coat mucilage.Extracted mucilage alone is not sufficient to attract RKNs,but seed-surface carbohydrates and proteins are required for this process.These findings suggest that the RKN chemoattractant is synthesized de novo upon mucilage extrusion but may be highly unstable.RKNs attracted by thismucilage-dependent mechanism can infect the emerging seedling.However,the attraction signal from seedling roots likely acts independently of the seed-coat signal and may mask the attraction to seed-coat mucilage after germination.Multiple RKN species are attracted byArabidopsis seeds,suggesting that this mechanism is conserved in RKNs.These findings indicate that seed exudate can regulate the behavior of multicellular animals and highlight the potential roles of seed-coat mucilage in biotic interactions with soil microorganisms.展开更多
The oxidative burst is a critical early event in plant-pathogen interactions that leads to a localized, programmed cell death (PCD) called the hypersensitive response (HR). The HR and associated PCD retard infection b...The oxidative burst is a critical early event in plant-pathogen interactions that leads to a localized, programmed cell death (PCD) called the hypersensitive response (HR). The HR and associated PCD retard infection by biotrophic pathogens, but can, in fact, enhance infection by necrotrophic pathogens like Botrytis cinerea. In addition to signaling the induction of the HR, reactive oxygen species (ROS) produced during the oxidative burst are?antimicrobial. We hypothesize that pathogens such as B. cinerea survive the antimicrobial effects of ROS, at least partially by secreting the antioxidant mannitol during infection. This is supported by the previous observation that overexpression of the catabolic enzyme mannitol dehydrogenase (MTD) can decrease a plants susceptibility to mannitol-secreting pathogens like B. cinerea. To extend the above hypothesis, and test the general utility of this approach in an important horticultural crop, we overexpressed celery MTD in tomato (Solanum lycopersicum cv. “Moneymaker”). In these studies, we observed a significant increase (up to 90%) in resistance to B. cinerea in transgenic tomatoes expressing high amounts of MTD.展开更多
In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogeni...In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogenicity factors produced by pathogens. Proteomics offers a constantly evolving set of novel techniques to study all aspects of protein structure and function. Proteomics aims to find out the identity and amount of each and every protein present in a cell and actual function mediating specific cellular processes. Structural proteomics elucidates the development and application of experimental approaches to define the primary, secondary and tertiary structures of proteins, while functional proteomics refers to the development and application of global (proteome wide or system-wide) experimental approaches to assess protein function. A detail understanding of plant defense response using successful combination of proteomic techniques and other high throughput techniques of cell biology, biochemistry as well as genomics is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to gel- and non gel-based proteomic techniques followed by the basics of plant-pathogen interaction, the use of proteomics in recent pasts to decipher the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.展开更多
Rice genes OsDjA2 and OsERF104,encoding a chaperone protein and an APETELA2/ethylene-responsive factor,respectively,are strongly induced in a compatible interaction with blast fungus,and also have function in plant su...Rice genes OsDjA2 and OsERF104,encoding a chaperone protein and an APETELA2/ethylene-responsive factor,respectively,are strongly induced in a compatible interaction with blast fungus,and also have function in plant susceptibility validated through gene silencing.Here,we reported the CRISPR/Cas9 knockout of OsDjA2 and OsERF104 genes resulting in considerable improvement of blast resistance.A total of 15 OsDjA2(62.5%)and 17 OsERF104(70.8%)T_(0)transformed lines were identified from 24 regenerated plants for each target and used in downstream experiments.Phenotyping of homozygous T1 mutant lines revealed not only a significant decrease in the number of blast lesions but also a reduction in the percentage of diseased leaf area,compared with the infected control plants.Our results supported CRISPR/Cas9-mediated target mutation in rice susceptibility genes as a potential and alternative breeding strategy for building resistance to blast disease.展开更多
Fungal phytopathogens pose a serious threat to global crop production.Only a handful of strategies are available to combat these fungal infections,and the increasing incidence of fungicide resistance is making the sit...Fungal phytopathogens pose a serious threat to global crop production.Only a handful of strategies are available to combat these fungal infections,and the increasing incidence of fungicide resistance is making the situation worse.Hence,the molecular understanding of plant–fungus interactions remains a primary focus of plant pathology.One of the hallmarks of host–pathogen interactions is the overproduction of reactive oxygen species(ROS)as a plant defense mechanism,collectively termed the oxidative burst.In general,high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection.To survive the oxidative burst and achieve successful host colonization,fungal phytopathogens employ intricate mechanisms for ROS perception,ROS neutralization,and protection from ROS-mediated damage.Together,these countermeasures maintain the physiological redox homeostasis that is essential for cell viability.In addition to intracellular antioxidant systems,phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation.This aspect of plant–pathogen interactions is significantly under-studied and provides enormous scope for future research.These adaptive responses,broadly categorized into“escape”and“exploitation”mechanisms,are poorly understood.In this review,we discuss the oxidative stress response of filamentous fungi,their perception signaling,and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.展开更多
The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events.Studies in animals,plants and fungi have uncovered sophistica...The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events.Studies in animals,plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses.In this review,we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription,mRNA splicing,and DNA damage response.Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis.Finally,the potentials in exploiting chromatin remodeling for management of crop disease are presented.展开更多
Aims Ripe,fleshy fruits generally function as rewards to attract mutualistic seed dispersers,but many fruits also contain high concentrations of toxic secondary metabolites.These compounds may serve a variety of adapt...Aims Ripe,fleshy fruits generally function as rewards to attract mutualistic seed dispersers,but many fruits also contain high concentrations of toxic secondary metabolites.These compounds may serve a variety of adaptive roles in seed dispersal or as a defense against non-dispersing seed predators or pathogens.We tested the effects of iridoid glycosides from fruits of a hybrid bush honeysuckle,Lonicera×bella,on the growth of two pathogenic fungal strains associated with fruit rot,Alternaria tenuissima and Aspergillus tubingensis.Methods Fungi were isolated from field-collected L.×bella fruits and identified using molecular techniques.Their growth rates were assessed in vitro in the presence of varying concentrations of pure loganin,one of the most abundant iridoid glycosides in fruits,as well as fruit extracts containing a mix of at least seven different iridoid glycosides.Important FindingsLoganin had strong dose-dependent negative effects on the growth of both fungi.Extracts from fruits had no effect on Aspergillus but a strong antifungal effect on Alternaria that increased with fruit ripening.Total iridoid glycoside concentrations in extracts were not good predictors of variation in fungal growth,but several individual compounds had significant negative effects.Although iridoid glycosides have primarily been studied as antiherbivore defenses in leaves,these results indicate that they can also function to reduce the growth of fungi associated with fruit rot.展开更多
Verticillium wilt is the second serious vascular wilt caused by the phytopathogenic fungus Verticillium dahliae Kleb.It has distributed worldwide,causing serious yield losses and fiber quality reduction in cotton prod...Verticillium wilt is the second serious vascular wilt caused by the phytopathogenic fungus Verticillium dahliae Kleb.It has distributed worldwide,causing serious yield losses and fiber quality reduction in cotton production.The pathogen has developed different mechanisms like the production of cell wall degrading enzymes,activation of virulence genes and protein effectors to succeed in its in fection.Cott on plant has also evolved multiple mechanisms in response to the fungus infection,including a strong production of lignin and callose deposition to strengthen the cell wall,burst of reactive oxygen species,accumulation of defene hormones,expression of defense-related genes,and target-directed strategies like cross-kingdom RNAi for specific virulent gene silencing.This review summarizes the recent progress made over the past two decades in understanding the interactions between cotton plant and the pathogen Verticillium dahliae during the infection process.The review also discusses the achievements in the control practices of cotton verticillium wilt in recent years,including cultivation practices,biological control,and molecular breeding strategies.These studies reveal that effective management strategies are needed to control the disease,while cultural practices and biological control approaches show promising results in the future.Furthermore,the biological control approaches developed in recent years,including antagonistic fungi,endophytic bacteria,and host induced gene sile ncing strategies provide efficie nt choices for in teg rated disease management.展开更多
基金supported by the Investissement d’Avenir program of the French National Agency of Research for the project GENIUS(ANR-11-BTBR-0001_GENIUS)the Institut Carnot Plant2Pro program for the project POTATOCRISPsupported by the ANR project Immunereceptor(ANR-15-CE20-0007).
文摘Since its discovery as a bacterial adaptive immune system and its development for genome editing in eukaryotes,the CRISPR technology has revolutionized plant research and precision crop breeding.The CRISPR toolbox holds great promise in the production of crops with genetic disease resistance to increase agriculture resilience and reduce chemical crop protection with a strong impact on the environment and public health.In this review,we provide an extensive overviewon recent breakthroughs in CRISPR technology,including the newly developed prime editing system that allows precision gene editing in plants.We present how each CRISPR tool can be selected for optimal use in accordance with its specific strengths and limitations,and illustrate how the CRISPR toolbox can foster the development of genetically pathogen-resistant crops for sustainable agriculture.
基金Financial support from DST FIST Ⅱ and DBT BUILDER to SC(SC/DBT-BUILDER/2022)is gratefully acknowledgedSERB and CSIR for providing National Post-doctoral fellowship and Ph.D.scholarship,respectively.
文摘Phosphoinositides are important regulatory membrane lipids,with a role in plant development and cellular function.Emerging evidence indicates that phosphoinositides play crucial roles in plant defence and are also utilized by pathogens for infection.In this review,we highlight the role of phosphoinositides in plant-pathogen interaction and the implication of this remarkable convergence in the battle against plant diseases.
基金supported by the National Natural Science Foundation of China(32122071,32272481,31772106)the Natural Science Foundation of Fujian Province(2021J06015).
文摘Vesicle trafficking is an essential cellular process upon which many physiological processes of eukaryotic cells rely.It is usually the‘language’of communication among the components of the endomembrane system within a cell,between cells and between a cell and its external environment.Generally,cells have the potential to internalize membrane-bound vesicles from external sources by endocytosis.Plants constantly interact with both mutualistic and pathogenic microbes.A large part of this interaction involves the exchange of transport vesicles between the plant cells and the microbes.Usually,in a pathogenic interaction,the pathogen releases vesicles containing bioactive molecules that can modulate the host immunity when absorbed by the host cells.In response to this attack,the host cells similarly mobilize some vesicles containing pathogenesis-related compounds to the pathogen infection site to destroy the pathogen,prevent it from penetrating the host cell or annul its influence.In fact,vesicle trafficking is involved in nearly all the strategies of phytopathogen attack subsequent plant immune responses.However,this field of plant-pathogen interaction is still at its infancy when narrowed down to plant-fungal pathogen interaction in relation to exchange of transport vesicles.Herein,we summarized some recent and novel findings unveiling the involvement of transport vesicles as a crosstalk in plant-fungal phytopathogen interaction,discussed their significance and identified some knowledge gaps to direct future research in the field.The roles of vesicles trafficking in the development of both organisms are also established.
基金supported by the Key R&D Plan of Zhejiang Province(2021C02057,2020C02002)the National Key R&D Program of China(2021YFE0113700)+2 种基金the International S&T Cooperation Program of China(2019YFE0103800)Fundamental Research Funds for the Zhejiang Provincial Universities[2021XZZX024]Zhejiang University Global Partnership Fund.We also appreciate Prof.Zhonghua Ma(Institute of Biotechnology,Zhejiang University)for his insightful advice on this work.
文摘The past few years have witnessed significant progress in emerging disease detection techniques foraccurately and rapidly tracking rice diseases and predicting potential solutions. In this review we focuson image processing techniques using machine learning (ML) and deep learning (DL) models related tomulti-scale rice diseases. Furthermore, we summarize applications of different detection techniques,including genomic, physiological, and biochemical approaches. In addition, we also present the state-ofthe-art in contemporary optical sensing applications of pathogen–plant interaction phenotypes. Thisreview serves as a valuable resource for researchers seeking effective solutions to address the challenges of high-throughput data and model recognition for early detection of issues affecting rice cropsthrough ML and DL models.
文摘Seed exudates influence the behavior of soil organisms,but howthis occurs remains unclear,particularly for multicellular animals.Here we show that compounds associated with Arabidopsis seed-coat mucilage regulate the behavior of soil-borne animals,specifically root-knot nematodes (RKNs).Infective RKN J2 larvae actively travel toward Arabidopsis seeds through chemotaxis.Analysis of Arabidopsis mucilage mutants demonstrated that the attraction of RKNs toArabidopsis seeds requires the synthesis and extrusion of.seed-coat mucilage.Extracted mucilage alone is not sufficient to attract RKNs,but seed-surface carbohydrates and proteins are required for this process.These findings suggest that the RKN chemoattractant is synthesized de novo upon mucilage extrusion but may be highly unstable.RKNs attracted by thismucilage-dependent mechanism can infect the emerging seedling.However,the attraction signal from seedling roots likely acts independently of the seed-coat signal and may mask the attraction to seed-coat mucilage after germination.Multiple RKN species are attracted byArabidopsis seeds,suggesting that this mechanism is conserved in RKNs.These findings indicate that seed exudate can regulate the behavior of multicellular animals and highlight the potential roles of seed-coat mucilage in biotic interactions with soil microorganisms.
文摘The oxidative burst is a critical early event in plant-pathogen interactions that leads to a localized, programmed cell death (PCD) called the hypersensitive response (HR). The HR and associated PCD retard infection by biotrophic pathogens, but can, in fact, enhance infection by necrotrophic pathogens like Botrytis cinerea. In addition to signaling the induction of the HR, reactive oxygen species (ROS) produced during the oxidative burst are?antimicrobial. We hypothesize that pathogens such as B. cinerea survive the antimicrobial effects of ROS, at least partially by secreting the antioxidant mannitol during infection. This is supported by the previous observation that overexpression of the catabolic enzyme mannitol dehydrogenase (MTD) can decrease a plants susceptibility to mannitol-secreting pathogens like B. cinerea. To extend the above hypothesis, and test the general utility of this approach in an important horticultural crop, we overexpressed celery MTD in tomato (Solanum lycopersicum cv. “Moneymaker”). In these studies, we observed a significant increase (up to 90%) in resistance to B. cinerea in transgenic tomatoes expressing high amounts of MTD.
文摘In recent years, proteomics has played a key role in identifying changes in protein levels in plant hosts upon infection by pathogenic organisms and in characterizing cellular and extracellular virulence and pathogenicity factors produced by pathogens. Proteomics offers a constantly evolving set of novel techniques to study all aspects of protein structure and function. Proteomics aims to find out the identity and amount of each and every protein present in a cell and actual function mediating specific cellular processes. Structural proteomics elucidates the development and application of experimental approaches to define the primary, secondary and tertiary structures of proteins, while functional proteomics refers to the development and application of global (proteome wide or system-wide) experimental approaches to assess protein function. A detail understanding of plant defense response using successful combination of proteomic techniques and other high throughput techniques of cell biology, biochemistry as well as genomics is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to gel- and non gel-based proteomic techniques followed by the basics of plant-pathogen interaction, the use of proteomics in recent pasts to decipher the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.
基金financially supported by Brazilian Agricultural Research Corporation (Embrapa)-Coordination for the Improvement of Higher Education PersonnelNational Council for Scientific and Technological Development, Federal District Research Support FoundationFoundation for Scientific and Technological Development of Mato Grosso do Sul State
文摘Rice genes OsDjA2 and OsERF104,encoding a chaperone protein and an APETELA2/ethylene-responsive factor,respectively,are strongly induced in a compatible interaction with blast fungus,and also have function in plant susceptibility validated through gene silencing.Here,we reported the CRISPR/Cas9 knockout of OsDjA2 and OsERF104 genes resulting in considerable improvement of blast resistance.A total of 15 OsDjA2(62.5%)and 17 OsERF104(70.8%)T_(0)transformed lines were identified from 24 regenerated plants for each target and used in downstream experiments.Phenotyping of homozygous T1 mutant lines revealed not only a significant decrease in the number of blast lesions but also a reduction in the percentage of diseased leaf area,compared with the infected control plants.Our results supported CRISPR/Cas9-mediated target mutation in rice susceptibility genes as a potential and alternative breeding strategy for building resistance to blast disease.
基金supported by a core grant from the National Institute of Plant Genome Research,New Delhi and Department of Biotechnology(DBT),Goverment of Indiathe DBT and the Department of Science and Technology(DST),Government of India,for DBT-SRF and DST-INSPIRE research fellowships,respectively.
文摘Fungal phytopathogens pose a serious threat to global crop production.Only a handful of strategies are available to combat these fungal infections,and the increasing incidence of fungicide resistance is making the situation worse.Hence,the molecular understanding of plant–fungus interactions remains a primary focus of plant pathology.One of the hallmarks of host–pathogen interactions is the overproduction of reactive oxygen species(ROS)as a plant defense mechanism,collectively termed the oxidative burst.In general,high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection.To survive the oxidative burst and achieve successful host colonization,fungal phytopathogens employ intricate mechanisms for ROS perception,ROS neutralization,and protection from ROS-mediated damage.Together,these countermeasures maintain the physiological redox homeostasis that is essential for cell viability.In addition to intracellular antioxidant systems,phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation.This aspect of plant–pathogen interactions is significantly under-studied and provides enormous scope for future research.These adaptive responses,broadly categorized into“escape”and“exploitation”mechanisms,are poorly understood.In this review,we discuss the oxidative stress response of filamentous fungi,their perception signaling,and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.
基金supported by Science and Technology Project of Zhejiang Province(2018C02G2011110)China Postdoctoral Science Foundation(2021 M692849),National Natural Science Foundation of China(31930088)China Agriculture Research System of MOF and MARAC(CARS-3-1-29).
文摘The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events.Studies in animals,plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses.In this review,we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription,mRNA splicing,and DNA damage response.Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis.Finally,the potentials in exploiting chromatin remodeling for management of crop disease are presented.
基金University of Colorado Biological Sciences(Initiative BURST grant to J.T.,S.R.W.and M.D.B.)National Science Foundation(grant DEB 1210884 to S.R.W.and M.D.B.).
文摘Aims Ripe,fleshy fruits generally function as rewards to attract mutualistic seed dispersers,but many fruits also contain high concentrations of toxic secondary metabolites.These compounds may serve a variety of adaptive roles in seed dispersal or as a defense against non-dispersing seed predators or pathogens.We tested the effects of iridoid glycosides from fruits of a hybrid bush honeysuckle,Lonicera×bella,on the growth of two pathogenic fungal strains associated with fruit rot,Alternaria tenuissima and Aspergillus tubingensis.Methods Fungi were isolated from field-collected L.×bella fruits and identified using molecular techniques.Their growth rates were assessed in vitro in the presence of varying concentrations of pure loganin,one of the most abundant iridoid glycosides in fruits,as well as fruit extracts containing a mix of at least seven different iridoid glycosides.Important FindingsLoganin had strong dose-dependent negative effects on the growth of both fungi.Extracts from fruits had no effect on Aspergillus but a strong antifungal effect on Alternaria that increased with fruit ripening.Total iridoid glycoside concentrations in extracts were not good predictors of variation in fungal growth,but several individual compounds had significant negative effects.Although iridoid glycosides have primarily been studied as antiherbivore defenses in leaves,these results indicate that they can also function to reduce the growth of fungi associated with fruit rot.
基金China Agriculture Research System of MOF and MARA,the Natural Science Foundation of China(32070560,31471538,and 31371668)Special Project of Fundamental Research Funds for the National Public Welfare Institutio ns of Institute of Cotton Research of Chinese Academy of Agricultural Sciences(1610162021004)+3 种基金the National Key R&D Program of China(2017YFD0101603-11,2016YFD0100500,2016YFD0101401)the Agricultural Science an dlechnology Innovation Program for CAAS(CAAS-ASTIP-ICRCAAS)the National High Technology Research and Development Program of China(2012AA101108 and 2009AA101104)the Central Level of the Scientific Research Institutes for Basic R&D Special Fund Business(1610162014008).
文摘Verticillium wilt is the second serious vascular wilt caused by the phytopathogenic fungus Verticillium dahliae Kleb.It has distributed worldwide,causing serious yield losses and fiber quality reduction in cotton production.The pathogen has developed different mechanisms like the production of cell wall degrading enzymes,activation of virulence genes and protein effectors to succeed in its in fection.Cott on plant has also evolved multiple mechanisms in response to the fungus infection,including a strong production of lignin and callose deposition to strengthen the cell wall,burst of reactive oxygen species,accumulation of defene hormones,expression of defense-related genes,and target-directed strategies like cross-kingdom RNAi for specific virulent gene silencing.This review summarizes the recent progress made over the past two decades in understanding the interactions between cotton plant and the pathogen Verticillium dahliae during the infection process.The review also discusses the achievements in the control practices of cotton verticillium wilt in recent years,including cultivation practices,biological control,and molecular breeding strategies.These studies reveal that effective management strategies are needed to control the disease,while cultural practices and biological control approaches show promising results in the future.Furthermore,the biological control approaches developed in recent years,including antagonistic fungi,endophytic bacteria,and host induced gene sile ncing strategies provide efficie nt choices for in teg rated disease management.