Intensification in rice crop production is generally understood as requiring increased use of material inputs: water, inorganic fertilizers, and agrochemicals. However, this is not the only kind of intensification ava...Intensification in rice crop production is generally understood as requiring increased use of material inputs: water, inorganic fertilizers, and agrochemicals. However, this is not the only kind of intensification available. More productive crop phenotypes, with traits such as more resistance to biotic and abiotic stresses and shorter crop cycles, are possible through modifications in the management of rice plants, soil, water, and nutrients, reducing rather than increasing material inputs. Greater factor productivity can be achieved through the application of new knowledge and more skill, and(initially) more labor, as seen from the System of Rice Intensification(SRI), whose practices are used in various combinations by as many as 10 million farmers on about 4 million hectares in over 50 countries. The highest yields achieved with these management methods have come from hybrids and improved rice varieties, confirming the importance of making genetic improvements. However,unimproved varieties are also responsive to these changes, which induce better growth and functioning of rice root systems and more abundance, diversity, and activity of beneficial soil organisms. Some of these organisms as symbiotic endophytes can affect and enhance the expression of rice plants' genetic potential as well as their phenotypic resilience to multiple stresses, including those of climate change. SRI experience and data suggest that decades of plant breeding have been selecting for the best crop genetic endowments under suboptimal growing conditions, with crowding of plants that impedes their photosynthesis and growth, flooding of rice paddies that causes roots to degenerate and forgoes benefits derived from aerobic soil organisms, and overuse of agrochemicals that adversely affect these organisms as well as soil and human health. This review paper reports evidence from research in India and Indonesia that changes in crop and water management can improve the expression of rice plants' genetic potential, thereby creating more producti展开更多
Knowledge bank is the core of an expert system. In a coal preparation plant design expert system (CPDES), it is difficult to make up the knowledge bank. There is terrible huge array of knowledge for coal preparation p...Knowledge bank is the core of an expert system. In a coal preparation plant design expert system (CPDES), it is difficult to make up the knowledge bank. There is terrible huge array of knowledge for coal preparation plant design. Some of them can eveu not be listed into distinct entries with common expressing methods. Some others would be tangled and tedious if unsuitable methods were used.The thesis explained how the expert knowledge for coal preparation plant design is accePted by computer, and how the different expression of knowledge is selected according to its characteristics.展开更多
文摘Intensification in rice crop production is generally understood as requiring increased use of material inputs: water, inorganic fertilizers, and agrochemicals. However, this is not the only kind of intensification available. More productive crop phenotypes, with traits such as more resistance to biotic and abiotic stresses and shorter crop cycles, are possible through modifications in the management of rice plants, soil, water, and nutrients, reducing rather than increasing material inputs. Greater factor productivity can be achieved through the application of new knowledge and more skill, and(initially) more labor, as seen from the System of Rice Intensification(SRI), whose practices are used in various combinations by as many as 10 million farmers on about 4 million hectares in over 50 countries. The highest yields achieved with these management methods have come from hybrids and improved rice varieties, confirming the importance of making genetic improvements. However,unimproved varieties are also responsive to these changes, which induce better growth and functioning of rice root systems and more abundance, diversity, and activity of beneficial soil organisms. Some of these organisms as symbiotic endophytes can affect and enhance the expression of rice plants' genetic potential as well as their phenotypic resilience to multiple stresses, including those of climate change. SRI experience and data suggest that decades of plant breeding have been selecting for the best crop genetic endowments under suboptimal growing conditions, with crowding of plants that impedes their photosynthesis and growth, flooding of rice paddies that causes roots to degenerate and forgoes benefits derived from aerobic soil organisms, and overuse of agrochemicals that adversely affect these organisms as well as soil and human health. This review paper reports evidence from research in India and Indonesia that changes in crop and water management can improve the expression of rice plants' genetic potential, thereby creating more producti
文摘Knowledge bank is the core of an expert system. In a coal preparation plant design expert system (CPDES), it is difficult to make up the knowledge bank. There is terrible huge array of knowledge for coal preparation plant design. Some of them can eveu not be listed into distinct entries with common expressing methods. Some others would be tangled and tedious if unsuitable methods were used.The thesis explained how the expert knowledge for coal preparation plant design is accePted by computer, and how the different expression of knowledge is selected according to its characteristics.