The optimization of the valve plate transition region is an important way of reducing the noise emission for an axial piston pump. However, the optimized methods through simulation or experiment are actually trial and...The optimization of the valve plate transition region is an important way of reducing the noise emission for an axial piston pump. However, the optimized methods through simulation or experiment are actually trial and error, and they cannot indicate the precise structural parameters of the valve plate transition region. In this study, a new design method for the transition region of valve plate based on the matching of flow area and reduction of transient reverse flow was proposed, and with which a valve plate was designed. Then, the impact of the flow ripple in the discharge line of an axial piston pump and the pressure overshoot and undershoot in the piston chamber on hydraulic and structural noise for axial piston pump is discussed. The noise reduction effect of the axial piston pump with this valve plate was analyzed by adopting a flow characteristic simulation model. Finally, the results showed that the application of this design method could contribute much to the reduction of the flow ripple and elimination of the pressure overshoot and undershoot. As a consequence, the method can be used in the design of a low-noise open circuit axial piston pump.展开更多
Axial piston pumps have been widely used in aircraft hydraulic systems to supply the system with pressurized fluid. The continuous improvement of the aircraft performance has put forward the demand on aviation piston ...Axial piston pumps have been widely used in aircraft hydraulic systems to supply the system with pressurized fluid. The continuous improvement of the aircraft performance has put forward the demand on aviation piston pumps for high power density, safety, and reliability. The lubricating interfaces in axial piston machines are the key design issue that greatly determines the pump performance and service life. The cylinder block/valve plate interface is one of these critical lubricating interfaces and has received considerable attention from many researchers in the last half century. This study aims to review the state-of-the-art literature on the cylinder block/valve plate interface comprehensively and systematically. First, we introduce various theoretical models developed to investigate the lubrication behaviors of the interface and compare them in terms of their assumptions and limitations. Second, the experimental studies on the cylinder block/valve plate interface are presented comprehensively, where the involved test rigs are divided into three types according to their fidelity levels and measurement functionality. Third, we summarize some typical approaches of structure optimization, surface shaping, and surface strengthening, which help improve the load-carrying and anti-wear capacities of the interface under severe operating conditions. Finally, the challenges and future trends of the cylinder block/valve plate interface research are discussed briefly.展开更多
In this paper,the piston type valve core and the unbalanced moment on its bottom are studied.To decrease the influence of non-common geometrical factors,a simplified model of the piston type globe valve is proposed in...In this paper,the piston type valve core and the unbalanced moment on its bottom are studied.To decrease the influence of non-common geometrical factors,a simplified model of the piston type globe valve is proposed in this study.Based on the computational fluid dynamics(CFD)method,the effects of different geometrical parameters on the unbalanced moment existing on the bottom of the valve core,which include the bending radius of the inlet flow channel,the diameter of the special-shaped pipe,and the height of the valve core,are studied.Finally,the effects of geometrical parameters on the unbalanced moment on the bottom of the valve core are clarified by correction and variation classification and provide a basis for further optimizing the structure of the piston type valve.The results show that the unbalanced moment decreases with the increase of the bending radius of the inlet flow channel,but increases with the increase of the diameter of the special-shaped pipe and the height of the valve core.Moreover,the relation between the unbalanced moment and flow rate is proposed.展开更多
This paper has introduced the developments of water hydraulic axial piston equipments. According to the effects of physicochemical properties of water on water hydraulic components, a novel valve plate for water hydra...This paper has introduced the developments of water hydraulic axial piston equipments. According to the effects of physicochemical properties of water on water hydraulic components, a novel valve plate for water hydraulic axial motor has been put forward, whose moment exerted by the fluid field between valve plate and bearing plate is balanced entirely. The material screening experiment of valve plate is done on the test rig. Through numerical simulation the effects of some geometry parameters on the performance of water hydraulic motor have been studied. The silencing grooves on the valve plate in water hydraulic motor can reduce the pressure shock and the occurrence of cavitation effectively. It is evident that the appropriate structure should change the wear status between matching pairs and reduces the wear and specific pressure of the matching pairs. The specimen with the new type valve plate is used in a tool system.展开更多
基金the National Basic Research Program (973 Program) of China,the Science Fund for Creative Research Groups of the National Natural Science Foundation of China
文摘The optimization of the valve plate transition region is an important way of reducing the noise emission for an axial piston pump. However, the optimized methods through simulation or experiment are actually trial and error, and they cannot indicate the precise structural parameters of the valve plate transition region. In this study, a new design method for the transition region of valve plate based on the matching of flow area and reduction of transient reverse flow was proposed, and with which a valve plate was designed. Then, the impact of the flow ripple in the discharge line of an axial piston pump and the pressure overshoot and undershoot in the piston chamber on hydraulic and structural noise for axial piston pump is discussed. The noise reduction effect of the axial piston pump with this valve plate was analyzed by adopting a flow characteristic simulation model. Finally, the results showed that the application of this design method could contribute much to the reduction of the flow ripple and elimination of the pressure overshoot and undershoot. As a consequence, the method can be used in the design of a low-noise open circuit axial piston pump.
基金supported by Chinese Civil Aircraft Project [No. MJ-2017-S49]China National Postdoctoral Program for Innovative Talents [No. BX20200210]China Postdoctoral Science Foundation [No. 2019M660086]。
文摘Axial piston pumps have been widely used in aircraft hydraulic systems to supply the system with pressurized fluid. The continuous improvement of the aircraft performance has put forward the demand on aviation piston pumps for high power density, safety, and reliability. The lubricating interfaces in axial piston machines are the key design issue that greatly determines the pump performance and service life. The cylinder block/valve plate interface is one of these critical lubricating interfaces and has received considerable attention from many researchers in the last half century. This study aims to review the state-of-the-art literature on the cylinder block/valve plate interface comprehensively and systematically. First, we introduce various theoretical models developed to investigate the lubrication behaviors of the interface and compare them in terms of their assumptions and limitations. Second, the experimental studies on the cylinder block/valve plate interface are presented comprehensively, where the involved test rigs are divided into three types according to their fidelity levels and measurement functionality. Third, we summarize some typical approaches of structure optimization, surface shaping, and surface strengthening, which help improve the load-carrying and anti-wear capacities of the interface under severe operating conditions. Finally, the challenges and future trends of the cylinder block/valve plate interface research are discussed briefly.
基金Project supported by the National Natural Science Foundation of China(No.51805470)the Zhejiang Provincial Key Research&Development Project(No.2019C01025)and the Youth Funds of the State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)(No.SKLoFP-QN-1801),China。
文摘In this paper,the piston type valve core and the unbalanced moment on its bottom are studied.To decrease the influence of non-common geometrical factors,a simplified model of the piston type globe valve is proposed in this study.Based on the computational fluid dynamics(CFD)method,the effects of different geometrical parameters on the unbalanced moment existing on the bottom of the valve core,which include the bending radius of the inlet flow channel,the diameter of the special-shaped pipe,and the height of the valve core,are studied.Finally,the effects of geometrical parameters on the unbalanced moment on the bottom of the valve core are clarified by correction and variation classification and provide a basis for further optimizing the structure of the piston type valve.The results show that the unbalanced moment decreases with the increase of the bending radius of the inlet flow channel,but increases with the increase of the diameter of the special-shaped pipe and the height of the valve core.Moreover,the relation between the unbalanced moment and flow rate is proposed.
文摘This paper has introduced the developments of water hydraulic axial piston equipments. According to the effects of physicochemical properties of water on water hydraulic components, a novel valve plate for water hydraulic axial motor has been put forward, whose moment exerted by the fluid field between valve plate and bearing plate is balanced entirely. The material screening experiment of valve plate is done on the test rig. Through numerical simulation the effects of some geometry parameters on the performance of water hydraulic motor have been studied. The silencing grooves on the valve plate in water hydraulic motor can reduce the pressure shock and the occurrence of cavitation effectively. It is evident that the appropriate structure should change the wear status between matching pairs and reduces the wear and specific pressure of the matching pairs. The specimen with the new type valve plate is used in a tool system.