The Godson project is the first attempt to design high performancegeneral-purpose microprocessors in China. This paper introduces the microarchitecture of theGodson-2 processor which is a 64-bit, 4-issue, out-of-order...The Godson project is the first attempt to design high performancegeneral-purpose microprocessors in China. This paper introduces the microarchitecture of theGodson-2 processor which is a 64-bit, 4-issue, out-of-order execution RISC processor that implementsthe 64-bit MIPS-like instruction set. The adoption of the aggressive out-of-order executiontechniques (such as register mapping, branch prediction, and dynamic scheduling) and cachetechniques (such as non-blocking cache, load speculation, dynamic memory disambiguation) helps theGodson-2 processor to achieve high performance even at not so high frequency. The Godson-2 processorhas been physically implemented on a 6-metal 0.18 μm CMOS technology based on the automaticplacing and routing flow with the help of some crafted library cells and macros. The area of thechip is 6,700 micrometers by 6,200 micrometers and the clock cycle at typical corner is 2.3 ns.展开更多
文摘The Godson project is the first attempt to design high performancegeneral-purpose microprocessors in China. This paper introduces the microarchitecture of theGodson-2 processor which is a 64-bit, 4-issue, out-of-order execution RISC processor that implementsthe 64-bit MIPS-like instruction set. The adoption of the aggressive out-of-order executiontechniques (such as register mapping, branch prediction, and dynamic scheduling) and cachetechniques (such as non-blocking cache, load speculation, dynamic memory disambiguation) helps theGodson-2 processor to achieve high performance even at not so high frequency. The Godson-2 processorhas been physically implemented on a 6-metal 0.18 μm CMOS technology based on the automaticplacing and routing flow with the help of some crafted library cells and macros. The area of thechip is 6,700 micrometers by 6,200 micrometers and the clock cycle at typical corner is 2.3 ns.