Piezo-actuated stage is a core component in micro-nano manufacturing field.However,the inherent nonlinearity,such as rate-dependent hysteresis,in the piezo-actuated stage severely impacts its tracking accuracy.This st...Piezo-actuated stage is a core component in micro-nano manufacturing field.However,the inherent nonlinearity,such as rate-dependent hysteresis,in the piezo-actuated stage severely impacts its tracking accuracy.This study proposes a direct adaptive control(DAC)method to realize high precision tracking.The proposed controller is designed by a time delay recursive neural network.Compared with those existing DAC methods designed under the general Lipschitz condition,the proposed control method can be easily generalized to the actual systems,which have hysteresis behavior.Then,a hopfield neural network(HNN)estimator is proposed to adjust the parameters of the proposed controller online.Meanwhile,a modular model consisting of linear submodel,hysteresis submodel,and lumped uncertainties is established based on the HNN estimator to describe the piezoactuated stage in this study.Thus,the performance of the HNN estimator can be exhibited visually through the modeling results.The proposed control method eradicates the adverse effects on the control performance arising from the inaccuracy in establishing the offline model and improves the capability to suppress the influence of hysteresis on the tracking accuracy of piezo-actuated stage in comparison with the conventional DAC methods.The stability of the control system is studied.Finally,a series of comparison experiments with a dual neural networks-based data driven adaptive controller are carried out to demonstrate the superiority of the proposed controller.展开更多
文摘文中提出了一种基于压电致动器的高动态焊丝启停控制技术,压电致动器膨胀锁止焊丝,收缩则释放焊丝.在焊丝锁止-释放过程中,可以主动驱动熔滴与熔池短路,并利用这一动态过程产生的惯性力驱动短路液桥断裂完成一次熔滴过渡.研究结果表明,组合压电致动器的加入对于小电流下GMAW短路过渡有显著的改善,短路开始和结束都稳定可控,避免了随机短路的发生,不再依赖大短路电流强制缩颈液桥,短路过渡频率显著提升,在DCEP 100 A焊接电流下可达130 Hz,DCEN模式下由于阴极斑点爬升导致电弧稳定性较差,但短路过渡频率也可达100 Hz.
基金supported by the National Natural Science Foundation of China(Grant Nos.51675228 and 51875237)the Key Project of Science and Technology Development Plan of Jilin Province,China(Grant No.20190303020SF)。
文摘Piezo-actuated stage is a core component in micro-nano manufacturing field.However,the inherent nonlinearity,such as rate-dependent hysteresis,in the piezo-actuated stage severely impacts its tracking accuracy.This study proposes a direct adaptive control(DAC)method to realize high precision tracking.The proposed controller is designed by a time delay recursive neural network.Compared with those existing DAC methods designed under the general Lipschitz condition,the proposed control method can be easily generalized to the actual systems,which have hysteresis behavior.Then,a hopfield neural network(HNN)estimator is proposed to adjust the parameters of the proposed controller online.Meanwhile,a modular model consisting of linear submodel,hysteresis submodel,and lumped uncertainties is established based on the HNN estimator to describe the piezoactuated stage in this study.Thus,the performance of the HNN estimator can be exhibited visually through the modeling results.The proposed control method eradicates the adverse effects on the control performance arising from the inaccuracy in establishing the offline model and improves the capability to suppress the influence of hysteresis on the tracking accuracy of piezo-actuated stage in comparison with the conventional DAC methods.The stability of the control system is studied.Finally,a series of comparison experiments with a dual neural networks-based data driven adaptive controller are carried out to demonstrate the superiority of the proposed controller.