Gene duplications provide evolutionary potentials for generating novel functions, while polyploidization or whole genome duplication (WGD) doubles the chromosomes initially and results in hundreds to thousands of re...Gene duplications provide evolutionary potentials for generating novel functions, while polyploidization or whole genome duplication (WGD) doubles the chromosomes initially and results in hundreds to thousands of retained duplicates. WGDs are strongly supported by evidence commonly found in many species-rich lineages of eukaryotes, and thus are considered as a major driving force in species diversification. We per- formed comparative genomic and phylogenomic analyses of 59 public genomes/transcriptomes and 46 newly sequenced transcriptomes covering major lineages of angiosperms to detect large-scale gene dupli- cation events by surveying tens of thousands of gene family trees. These analyses confirmed most of the previously reported WGDs and provided strong evidence for novel ones in many lineages. The detected WGDs supported a model of exponential gene loss during evolution with an estimated half-life of approx- imately 21.6 million years, and were correlated with both the emergence of lineages with high degrees of diversification and periods of global climate changes. The new datasets and analyses detected many novel WGDs widely spread during angiosperm evolution, uncovered preferential retention of gene functions in essential cellular metabolisms, and provided clues for the roles of WGD in promoting angiosperm radiation and enhancing their adaptation to environmental changes.展开更多
Living gymnosperms comprise four major groups:cycads,Ginkgo,conifers,and gnetophytes.Relationships among/within these lineages have not been fully resolved.Next generation sequencing has made available a large number ...Living gymnosperms comprise four major groups:cycads,Ginkgo,conifers,and gnetophytes.Relationships among/within these lineages have not been fully resolved.Next generation sequencing has made available a large number of sequences,including both plastomes and single-copy nuclear genes,for reconstruction of solid phylogenetic trees.Recent advances in gymnosperm phylogenomic studies have updated our knowledge of gymnosperm systematics.Here,we review major advances of gymnosperm phylogeny over the past 10 years and propose an updated classification of extant gymnosperms.This new classification includes three classes(Cycadopsida,Ginkgoopsida,and Pinopsida),five subclasses(Cycadidae,Ginkgoidae,Cupressidae,Pinidae,and Gnetidae),eight orders(Cycadales,Ginkgoales,Araucariales,Cupressales,Pinales,Ephedrales,Gnetales,and Welwitschiales),13 families,and 86 genera.We also described six new tribes including Acmopyleae Y.Yang,Austrocedreae Y.Yang,Chamaecyparideae Y.Yang,Microcachrydeae Y.Yang,Papuacedreae Y.Yang,and Prumnopityeae Y.Yang,and made 27 new combinations in the genus Sabina.展开更多
Orchidaceae(with>28,000 orchid species)are one of the two largest plant families,with economically and ecologically important species,and occupy global and diverse niches with primary distribution in rainforests.Am...Orchidaceae(with>28,000 orchid species)are one of the two largest plant families,with economically and ecologically important species,and occupy global and diverse niches with primary distribution in rainforests.Among orchids,70%grow on other plants as epiphytes;epiphytes contribute up to~50%of the plant diversity in rainforests and provide food and shelter for diverse animals and microbes,thereby contributing to the health of these ecosystems.Orchids account for over two-thirds of vascular epiphytes and provide an excellent model for studying evolution of epiphytism.Extensive phylogenetic studies of Orchidaceae and subgroups have;been crucial for understanding relationships among many orchid lineages,although some uncertainties remain.For example,in the largest subfamily Epidendroideae with nearly all epiphytic orchids,relationships among some tribes and many subtribes are still controversial,hampering evolutionary analyses of epiphytism.Here we obtained 1,450 low-copy nuclear genes from 610 orchid species,including 431 with newly generated transcriptomes,and used them for the reconstruction of robust Orchidaceae phylogenetic trees with highly supported placements of tribes and subtribes.We also provide generally wellsupported phylogenetic placements of 131 genera and 437 species that were not sampled by previous plastid and nuclear phylogenomic studies.Molecular clock analyses estimated the Orchidaceae origin at~132 million years ago(Ma)and divergences of most subtribes from 52 to 29 Ma.Character reconstruction supports at least 14 parallel origins of epiphytism;one such origin was placed at the most recent common ancestor of~95%of epiphytic orchids and linked to modern rainforests.Ten occurrences of rapid increase in the diversification rate were detected within Epidendroideae near and after the K-Pg boundary,contributing to~80%of the Orchidaceae diversity.This study provides a robust and the largest family-wide Orchidaceae nuclear phylogenetic tree thus far and new insights into the evolution of epiphytism in展开更多
Zygomycetes are phylogenetically early diverging,ecologically diverse,industrially valuable,agriculturally beneficial,and clinically pathogenic fungi.Although new phyla and subphyla have been constantly established to...Zygomycetes are phylogenetically early diverging,ecologically diverse,industrially valuable,agriculturally beneficial,and clinically pathogenic fungi.Although new phyla and subphyla have been constantly established to accommodate spe-cific members and a subkingdom Mucoromyceta,comprising Calcarisporiellomycota,Glomeromycota,Mortierellomycota and Mucoromycota,was erected to unite core zygomycetous fungi,phylogenetic relationships within phyla have not been well resolved.Taking account of the information of monophyly and divergence time estimated from ITS and LSU rDNA sequences,the present study updates the classification framework of the phylum Mucoromycota from the class down to the generic rank:three classes,three orders,20 families(including five new families Circinellaceae,Protomycocladaceae,Rhizomucoraceae,Syzygitaceae and Thermomucoraceae)and 64 genera.The taxonomic hierarchy was calibrated with estimated divergence times:phylum earlier than 617 Mya,classes and orders earlier than 547 Mya,families earlier than 199 Mya,and genera earlier than 12 Mya.Along with this outline,all genera of Mucoromycota are annotated and 58 new species are described.In addition,three new combinations are proposed.In this study,we update the taxonomic backbone of the phylum Mucoromycota and reinforce its phylogeny.We also contribute numerous new taxa and enrich the diversity of Mucoromycota.展开更多
Angiosperms(flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the “abominable mys...Angiosperms(flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the “abominable mystery,”hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological,and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences,dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families,and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella,Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families.Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore,we discuss the implications of nuclear phylogenomic analyses on ances展开更多
The rapid expansion of next-generation sequencing (NGS) has generated a powerful array of approaches to address fundamental questions in biology. Several genome-partitioning strategies to sequence selected subsets o...The rapid expansion of next-generation sequencing (NGS) has generated a powerful array of approaches to address fundamental questions in biology. Several genome-partitioning strategies to sequence selected subsets of the genome have emerged in the fields of phylogenomics and evolutionary genomics. In this review, we summarize the applications, advantages and limitations of four NGS-based genome- partitioning approaches in plant phylogenomics: genome skimming, transcriptome sequencing (RNA- seq), restriction site associated DNA sequencing (RAD-Seq), and targeted capture (Hyb-seq). Of these four genome-partitioning approaches, targeted capture (especially Hyb-seq) shows the greatest promise for plant phy^ogenetics over the next fex~ years. This reviex~ wi~ aid ~esea^chers in their selection of appropriate genome-partitioning approaches to address questions of evolutionary scale, where we anticipate continued development and expansion ofwhole-genome sequencing strategies in the fields of plant phylogenomics and evolutionary biology research.展开更多
Creating a multi-gene alignment matrix for phylogenetic analysis using organelle genomes involves aligning single-gene datasets manually,a process that can be time-consuming and prone to errors.The HomBlocks pipeline ...Creating a multi-gene alignment matrix for phylogenetic analysis using organelle genomes involves aligning single-gene datasets manually,a process that can be time-consuming and prone to errors.The HomBlocks pipeline has been created to eliminate the inaccuracies arising from manual operations.The processing of a large number of sequences,however,remains a time-consuming task.To conquer this challenge,we develop a speedy and efficient method called Organelle Genomes for Phylogenetic Analysis(ORPA).ORPA can quickly generate multiple sequence alignments for whole-genome comparisons by parsing the result files of NCBI BLAST,completing the task just in 1 min.With increasing data volume,the efficiency of ORPA is even more pronounced,over 300 times faster than HomBlocks in aligning 60 high-plant chloroplast genomes.The phylogenetic tree outputs from ORPA are equivalent to HomBlocks,indicating its outstanding efficiency.Due to its speed and accuracy,ORPA can identify species-level evolutionary conflicts,providing valuable insights into evolutionary cognition.展开更多
Establishing how lineages with similar traits are phylogenetically related remains critical for understanding the origin of biodiversity on Earth.Floral traits in plants are widely used to explore phylogenetic relatio...Establishing how lineages with similar traits are phylogenetically related remains critical for understanding the origin of biodiversity on Earth.Floral traits in plants are widely used to explore phylogenetic relationships and to delineate taxonomic groups.The subtribe Swertiinae(Gentianaceae)comprises more than 350 species with high floral diversity ranging from rotate to tubular corollas and possessing diverse nectaries.Here we performed phylogenetic analysis of 60 species from all 15 genera of the subtribe Swertiinae sensu Ho and Liu,representing the range of floral diversity,using data from the nuclear and plastid genomes.Extensive topological conflicts were present between the nuclear and plastome trees.Three of the 15 genera represented by multiple species are polyphyletic in both trees.Key floral traits including corolla type,absence or presence of lobe scales,nectary type,nectary position,and stigma type are randomly distributed in the nuclear and plastome trees without phylogenetic correlation.We also revealed the likely ancient hybrid origin of one large clade comprising 10 genera with diverse floral traits.These results highlight the complex evolutionary history of this subtribe.The phylogenies constructed here provide a basic framework for further exploring the ecological and genetic mechanisms underlying both species diversification and floral diversity.展开更多
文摘Gene duplications provide evolutionary potentials for generating novel functions, while polyploidization or whole genome duplication (WGD) doubles the chromosomes initially and results in hundreds to thousands of retained duplicates. WGDs are strongly supported by evidence commonly found in many species-rich lineages of eukaryotes, and thus are considered as a major driving force in species diversification. We per- formed comparative genomic and phylogenomic analyses of 59 public genomes/transcriptomes and 46 newly sequenced transcriptomes covering major lineages of angiosperms to detect large-scale gene dupli- cation events by surveying tens of thousands of gene family trees. These analyses confirmed most of the previously reported WGDs and provided strong evidence for novel ones in many lineages. The detected WGDs supported a model of exponential gene loss during evolution with an estimated half-life of approx- imately 21.6 million years, and were correlated with both the emergence of lineages with high degrees of diversification and periods of global climate changes. The new datasets and analyses detected many novel WGDs widely spread during angiosperm evolution, uncovered preferential retention of gene functions in essential cellular metabolisms, and provided clues for the roles of WGD in promoting angiosperm radiation and enhancing their adaptation to environmental changes.
基金supported by the National Natural Science Foundation of China(31970205,31870206)the Metasequoia funding of the Nanjing Forestry University,China。
文摘Living gymnosperms comprise four major groups:cycads,Ginkgo,conifers,and gnetophytes.Relationships among/within these lineages have not been fully resolved.Next generation sequencing has made available a large number of sequences,including both plastomes and single-copy nuclear genes,for reconstruction of solid phylogenetic trees.Recent advances in gymnosperm phylogenomic studies have updated our knowledge of gymnosperm systematics.Here,we review major advances of gymnosperm phylogeny over the past 10 years and propose an updated classification of extant gymnosperms.This new classification includes three classes(Cycadopsida,Ginkgoopsida,and Pinopsida),five subclasses(Cycadidae,Ginkgoidae,Cupressidae,Pinidae,and Gnetidae),eight orders(Cycadales,Ginkgoales,Araucariales,Cupressales,Pinales,Ephedrales,Gnetales,and Welwitschiales),13 families,and 86 genera.We also described six new tribes including Acmopyleae Y.Yang,Austrocedreae Y.Yang,Chamaecyparideae Y.Yang,Microcachrydeae Y.Yang,Papuacedreae Y.Yang,and Prumnopityeae Y.Yang,and made 27 new combinations in the genus Sabina.
基金supported by funds from the Eberly College of Sciences and the Huck Institutes of the Life Sciences at the Pennsylvania State Universitythe Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University(72202200205)。
文摘Orchidaceae(with>28,000 orchid species)are one of the two largest plant families,with economically and ecologically important species,and occupy global and diverse niches with primary distribution in rainforests.Among orchids,70%grow on other plants as epiphytes;epiphytes contribute up to~50%of the plant diversity in rainforests and provide food and shelter for diverse animals and microbes,thereby contributing to the health of these ecosystems.Orchids account for over two-thirds of vascular epiphytes and provide an excellent model for studying evolution of epiphytism.Extensive phylogenetic studies of Orchidaceae and subgroups have;been crucial for understanding relationships among many orchid lineages,although some uncertainties remain.For example,in the largest subfamily Epidendroideae with nearly all epiphytic orchids,relationships among some tribes and many subtribes are still controversial,hampering evolutionary analyses of epiphytism.Here we obtained 1,450 low-copy nuclear genes from 610 orchid species,including 431 with newly generated transcriptomes,and used them for the reconstruction of robust Orchidaceae phylogenetic trees with highly supported placements of tribes and subtribes.We also provide generally wellsupported phylogenetic placements of 131 genera and 437 species that were not sampled by previous plastid and nuclear phylogenomic studies.Molecular clock analyses estimated the Orchidaceae origin at~132 million years ago(Ma)and divergences of most subtribes from 52 to 29 Ma.Character reconstruction supports at least 14 parallel origins of epiphytism;one such origin was placed at the most recent common ancestor of~95%of epiphytic orchids and linked to modern rainforests.Ten occurrences of rapid increase in the diversification rate were detected within Epidendroideae near and after the K-Pg boundary,contributing to~80%of the Orchidaceae diversity.This study provides a robust and the largest family-wide Orchidaceae nuclear phylogenetic tree thus far and new insights into the evolution of epiphytism in
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.31970009,32170012 and 32000010)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,Grant No.2019QZKK0503)the Third Xinjiang Scientific Expedition and Research Program(STEP,Grant No.2021XJKK0505).
文摘Zygomycetes are phylogenetically early diverging,ecologically diverse,industrially valuable,agriculturally beneficial,and clinically pathogenic fungi.Although new phyla and subphyla have been constantly established to accommodate spe-cific members and a subkingdom Mucoromyceta,comprising Calcarisporiellomycota,Glomeromycota,Mortierellomycota and Mucoromycota,was erected to unite core zygomycetous fungi,phylogenetic relationships within phyla have not been well resolved.Taking account of the information of monophyly and divergence time estimated from ITS and LSU rDNA sequences,the present study updates the classification framework of the phylum Mucoromycota from the class down to the generic rank:three classes,three orders,20 families(including five new families Circinellaceae,Protomycocladaceae,Rhizomucoraceae,Syzygitaceae and Thermomucoraceae)and 64 genera.The taxonomic hierarchy was calibrated with estimated divergence times:phylum earlier than 617 Mya,classes and orders earlier than 547 Mya,families earlier than 199 Mya,and genera earlier than 12 Mya.Along with this outline,all genera of Mucoromycota are annotated and 58 new species are described.In addition,three new combinations are proposed.In this study,we update the taxonomic backbone of the phylum Mucoromycota and reinforce its phylogeny.We also contribute numerous new taxa and enrich the diversity of Mucoromycota.
基金supported by funds from the Eberly College of Sciences and the Huck Institutes of the Life Sciences at the Pennsylvania State University。
文摘Angiosperms(flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the “abominable mystery,”hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological,and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences,dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families,and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella,Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families.Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore,we discuss the implications of nuclear phylogenomic analyses on ances
基金supported by the Large-scale Scientific Facilities of the Chinese Academy of Sciences (Grant No: 2017-LSFGBOWS-01)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000)the Program of Science and Technology Talents Training of Yunnan Province (2017HA014)
文摘The rapid expansion of next-generation sequencing (NGS) has generated a powerful array of approaches to address fundamental questions in biology. Several genome-partitioning strategies to sequence selected subsets of the genome have emerged in the fields of phylogenomics and evolutionary genomics. In this review, we summarize the applications, advantages and limitations of four NGS-based genome- partitioning approaches in plant phylogenomics: genome skimming, transcriptome sequencing (RNA- seq), restriction site associated DNA sequencing (RAD-Seq), and targeted capture (Hyb-seq). Of these four genome-partitioning approaches, targeted capture (especially Hyb-seq) shows the greatest promise for plant phy^ogenetics over the next fex~ years. This reviex~ wi~ aid ~esea^chers in their selection of appropriate genome-partitioning approaches to address questions of evolutionary scale, where we anticipate continued development and expansion ofwhole-genome sequencing strategies in the fields of plant phylogenomics and evolutionary biology research.
基金supported by the National Key R&D Program of China(2018YFA0903200)Science Technology and Innovation Commission of Shenzhen Municipality of China(ZDSYS 20200811142605017)It was also supported by Innovation Program of Chinese Academy of Agricultural Sciences and the Elite Young Scientists Program of CAAS.
文摘Creating a multi-gene alignment matrix for phylogenetic analysis using organelle genomes involves aligning single-gene datasets manually,a process that can be time-consuming and prone to errors.The HomBlocks pipeline has been created to eliminate the inaccuracies arising from manual operations.The processing of a large number of sequences,however,remains a time-consuming task.To conquer this challenge,we develop a speedy and efficient method called Organelle Genomes for Phylogenetic Analysis(ORPA).ORPA can quickly generate multiple sequence alignments for whole-genome comparisons by parsing the result files of NCBI BLAST,completing the task just in 1 min.With increasing data volume,the efficiency of ORPA is even more pronounced,over 300 times faster than HomBlocks in aligning 60 high-plant chloroplast genomes.The phylogenetic tree outputs from ORPA are equivalent to HomBlocks,indicating its outstanding efficiency.Due to its speed and accuracy,ORPA can identify species-level evolutionary conflicts,providing valuable insights into evolutionary cognition.
基金supported by the Natural Science Foundation of China(32170221)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB31000000)Fundamental Research Funds for the Central Universities(YJ201936,SCU2019D013 and 2020SCUNL20)。
文摘Establishing how lineages with similar traits are phylogenetically related remains critical for understanding the origin of biodiversity on Earth.Floral traits in plants are widely used to explore phylogenetic relationships and to delineate taxonomic groups.The subtribe Swertiinae(Gentianaceae)comprises more than 350 species with high floral diversity ranging from rotate to tubular corollas and possessing diverse nectaries.Here we performed phylogenetic analysis of 60 species from all 15 genera of the subtribe Swertiinae sensu Ho and Liu,representing the range of floral diversity,using data from the nuclear and plastid genomes.Extensive topological conflicts were present between the nuclear and plastome trees.Three of the 15 genera represented by multiple species are polyphyletic in both trees.Key floral traits including corolla type,absence or presence of lobe scales,nectary type,nectary position,and stigma type are randomly distributed in the nuclear and plastome trees without phylogenetic correlation.We also revealed the likely ancient hybrid origin of one large clade comprising 10 genera with diverse floral traits.These results highlight the complex evolutionary history of this subtribe.The phylogenies constructed here provide a basic framework for further exploring the ecological and genetic mechanisms underlying both species diversification and floral diversity.