Echinochloa phyUopogon proliferation seriously threatens rice production worldwide. We combined a restriction-site associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of simple se...Echinochloa phyUopogon proliferation seriously threatens rice production worldwide. We combined a restriction-site associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for E. phyllopogon. RAD tags were generated from the genomic DNA of two E. phyUopogon plants, and sequenced to produce 5197.7 Mb and 5242.9 Mb high quality sequences, respectively. The GC content of E. phyllopogon was 45.8%, which is high for monocots. In total, 4710 putative SSRs were identified in 4132 contigs, which permitted the design of PCR primers for E. phyllopogon. Most repeat motifs among the SSRs identified were dinucleotide (〉82%), and most of these SSRs were four motif-repeats (〉75%). The most frequent motif was AT, accounting for 36.3%-37.2%, followed by AG and AC. In total, 78 putative polymorphic SSR loci were found. A total of 49,179 SNPs were discovered between the two samples of E. phyllopogon, 67.1% of which were transversions and 32.9% were transitions. We used eight SSRs to study the genetic diversity of four E. phyllopogon populations collected from rice fields in China and all eight loci tested were polymorphic.展开更多
基金supported by China Postdoctoral Science Foundation (2015M571763)the Special Fund for Agroscientific Research in the Public Interest of China (201303022)
文摘Echinochloa phyUopogon proliferation seriously threatens rice production worldwide. We combined a restriction-site associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for E. phyllopogon. RAD tags were generated from the genomic DNA of two E. phyUopogon plants, and sequenced to produce 5197.7 Mb and 5242.9 Mb high quality sequences, respectively. The GC content of E. phyllopogon was 45.8%, which is high for monocots. In total, 4710 putative SSRs were identified in 4132 contigs, which permitted the design of PCR primers for E. phyllopogon. Most repeat motifs among the SSRs identified were dinucleotide (〉82%), and most of these SSRs were four motif-repeats (〉75%). The most frequent motif was AT, accounting for 36.3%-37.2%, followed by AG and AC. In total, 78 putative polymorphic SSR loci were found. A total of 49,179 SNPs were discovered between the two samples of E. phyllopogon, 67.1% of which were transversions and 32.9% were transitions. We used eight SSRs to study the genetic diversity of four E. phyllopogon populations collected from rice fields in China and all eight loci tested were polymorphic.
文摘为明确稻田稗草Echinochloa phyllopogon(Stapf.)Koss.对噁唑酰草胺的抗药性水平,在对采自辽宁省、黑龙江省、湖南省和江西省共20个水稻产区的稗草种群按田间推荐剂量筛选后,测定了疑似抗药性稗草种群BN-1、BN-16、BN-17和疑似敏感性稗草种群BN-20的整株抗药水平,并离体测定了不同种群体内乙酰辅酶A羧化酶(acetyl co-enzyme A carboxylase,ACCase)对噁唑酰草胺的敏感性。结果显示,在田间推荐剂量下,种群BN-1、BN-16、BN-17和BN-20相对鲜重分别为92.6%、86.6%、64.9%和1.1%。相比种群BN-20,种群BN-1、BN-16和BN-17对噁唑酰草胺敏感性较低,抗性指数分别为33.83、30.07和14.87;ACCase活性测定结果显示,种群BN-1、BN-16和BN-17的抗性指数分别为33.71、27.16和15.23。结果表明稗草种群BN-1、BN-16和BN-17均对噁唑酰草胺产生了抗药性,抗性程度依次为BN-1>BN-16>BN-17,而其体内ACCase敏感性降低可能是其产生抗药性的原因之一。