Flexible-shelled eggs of the lizards Phrynocephalus przewalskii and P. versicolor were incubated under different thermal and hydric conditions to elicit the effects of incubation environment on hatching success, embry...Flexible-shelled eggs of the lizards Phrynocephalus przewalskii and P. versicolor were incubated under different thermal and hydric conditions to elicit the effects of incubation environment on hatching success, embryonic development and duration as well as hatchling phenotypes. Embryogenesis of the two species was not sensitive to changes in the hydric environment except P. przewalskii incubated in 30°C group. Temperature significantly altered the duration of embryogenesis, with cooler temperatures leading to a longer incubation period. Hatching success was greater at 26 and 30°C than at 34°C. The hatchlings incubated at 26 and 30°C had longer snout-vent length, larger body mass, and better locomotor performance than those incubated at 34°C. Compared to P. przewalskii, P. versicolor had a shorter incubation period and yielded smaller hatchlings, which then had a higher survival rate in cooler and drier habitats. We conclude that an incubation temperature of 30°C would produce the best balance among developmental rate, hatching success, and post-hatching performance. We speculate that the upper temperature limit for incubation of P. versicolor eggs may be slightly higher than 34°C.展开更多
The timing of reproduction can significantly affect an offspring's fitness, thereby also influencing the fitness of the parents, especially in species inhabiting extreme environments, such as deserts. Female reproduc...The timing of reproduction can significantly affect an offspring's fitness, thereby also influencing the fitness of the parents, especially in species inhabiting extreme environments, such as deserts. Female reproductive cycles in Phrynocephalus przewalskii were studied from April to September 2008. Significant cycles of gonadal volume were found in all studied populations and the cycles were similar among the various populations. Females began vitellogenesis in April and contained oviductal eggs form May to June. Gonad volume decreased significantly in July and reached minimum volume from August to September. The follicular growth was negatively correlated with increasing precipitation and temperature in all populations. Hatching occurs during summer and early fall, when most of the annual rainfall occurs. Mean clutch size based on all populations was 2.7 ± 0.9 SE (n = 71).展开更多
In order to tease apart proximate vs. ultimate sources of variation in reproductive strategy, studies have increasingly focused on populations rather than species as the unit of interest. The reproductive parameters o...In order to tease apart proximate vs. ultimate sources of variation in reproductive strategy, studies have increasingly focused on populations rather than species as the unit of interest. The reproductive parameters of Phrynocephalus przewalskii (Agamidae) in different populations within the same phylogenetic clade were compared in this study. Female SVL, clutch size, egg volume and clutch volume varied significantly among populations. With increase in latitude, clutch size increased, while egg size decreased. Relatively fewer but larger eggs were produced with increasing of population density. Food availability had positive effects on clutch size, but no effect on egg size. Our result indicated that latitude, food availability and population density may be the proximate factors affecting the reproductive parameters ofP. przewalskii.展开更多
Sexual size dimorphism (SSD) is a general phenomenon in lizards, and can evolve through sexual selection or natural selection. But natural selection, which was thought to operate mainly through reducing the competit...Sexual size dimorphism (SSD) is a general phenomenon in lizards, and can evolve through sexual selection or natural selection. But natural selection, which was thought to operate mainly through reducing the competition be- tween the two sexes (niche divergence hypothesis), gave rise to a lot of controversy. We tested the niche divergence hypothesis in the toad-headed lizard Phrynocephalus przewalskii by comparing diet composition and prey sizes between males and females. The species was found to be sexual dimorphic, with males having relatively larger snout-vent length, head width, head length, and tail length, while females have relatively larger abdomen length. Based on analysis of 93 studied stomachs, a total of 1359 prey items were identified. The most common prey items were formicid, lygaeid and tenebrionid. The two sexes did not differ in the relative proportions of prey size categories they consumed and the dietary overlap based on prey species was high (O = 0.989). In addition, the meal size, the volume or any maximal dimension of the largest prey item in the stomach was not explained by the sexes. According to our results, food niche divergence might not play an important role in the SSD evolution ofP. przewalskii.展开更多
Sympatric reptiles are the ideal system for investigating temperature-driven coexistence. Understanding thermally physiological responses of sympatric lizards is necessary to reveal the physiological mechanisms that u...Sympatric reptiles are the ideal system for investigating temperature-driven coexistence. Understanding thermally physiological responses of sympatric lizards is necessary to reveal the physiological mechanisms that underpin the sympatric occurrence of reptiles. In this study, we used three lizard species, Eremias argus, E. multiocellata, and Phrynocephalus przewalskii, which are sympatric in the Inner Mongolia desert steppe, as a study system. By comparing their resting metabolic rates(RMR) and locomotion at different body temperatures, we aimed to better understand their physiological responses to thermal environments, which may explain the sympatric occurrence of these lizards. Our results showed that E. argus had significantly higher RMR and sprint speed than E. multiocellata, and higher RMR than P. przewalskii. In addition, the optimal temperature that maximized metabolic rates and locomotion for E. argus and E. multiocellata was 36°C, whereas for P. przewalskii it was 39°C. Our study revealed the physiological responses to temperatures that justify the sympatric occurrence of these lizards with different thermal and microhabitat preferences and active body temperatures. Eremias argus and E. multiocellata, which have lower body temperatures than P. przewalskii, depend on higher RMR and locomotion to compensate for their lower body temperatures in field conditions. Our study also highlights the importance of using an integrative approach, combining behavior and physiology, to explore the basis of sympatric occurrence in ectothermic species.展开更多
基金funded by the National Natural Science Foundation of China(NSFC 31071918)
文摘Flexible-shelled eggs of the lizards Phrynocephalus przewalskii and P. versicolor were incubated under different thermal and hydric conditions to elicit the effects of incubation environment on hatching success, embryonic development and duration as well as hatchling phenotypes. Embryogenesis of the two species was not sensitive to changes in the hydric environment except P. przewalskii incubated in 30°C group. Temperature significantly altered the duration of embryogenesis, with cooler temperatures leading to a longer incubation period. Hatching success was greater at 26 and 30°C than at 34°C. The hatchlings incubated at 26 and 30°C had longer snout-vent length, larger body mass, and better locomotor performance than those incubated at 34°C. Compared to P. przewalskii, P. versicolor had a shorter incubation period and yielded smaller hatchlings, which then had a higher survival rate in cooler and drier habitats. We conclude that an incubation temperature of 30°C would produce the best balance among developmental rate, hatching success, and post-hatching performance. We speculate that the upper temperature limit for incubation of P. versicolor eggs may be slightly higher than 34°C.
文摘The timing of reproduction can significantly affect an offspring's fitness, thereby also influencing the fitness of the parents, especially in species inhabiting extreme environments, such as deserts. Female reproductive cycles in Phrynocephalus przewalskii were studied from April to September 2008. Significant cycles of gonadal volume were found in all studied populations and the cycles were similar among the various populations. Females began vitellogenesis in April and contained oviductal eggs form May to June. Gonad volume decreased significantly in July and reached minimum volume from August to September. The follicular growth was negatively correlated with increasing precipitation and temperature in all populations. Hatching occurs during summer and early fall, when most of the annual rainfall occurs. Mean clutch size based on all populations was 2.7 ± 0.9 SE (n = 71).
文摘In order to tease apart proximate vs. ultimate sources of variation in reproductive strategy, studies have increasingly focused on populations rather than species as the unit of interest. The reproductive parameters of Phrynocephalus przewalskii (Agamidae) in different populations within the same phylogenetic clade were compared in this study. Female SVL, clutch size, egg volume and clutch volume varied significantly among populations. With increase in latitude, clutch size increased, while egg size decreased. Relatively fewer but larger eggs were produced with increasing of population density. Food availability had positive effects on clutch size, but no effect on egg size. Our result indicated that latitude, food availability and population density may be the proximate factors affecting the reproductive parameters ofP. przewalskii.
基金founded by the National Natural Science Foundation of China (31200287)the Fundamental Research Funds for the Central Universities (lzujbky-2012-114)
文摘Sexual size dimorphism (SSD) is a general phenomenon in lizards, and can evolve through sexual selection or natural selection. But natural selection, which was thought to operate mainly through reducing the competition be- tween the two sexes (niche divergence hypothesis), gave rise to a lot of controversy. We tested the niche divergence hypothesis in the toad-headed lizard Phrynocephalus przewalskii by comparing diet composition and prey sizes between males and females. The species was found to be sexual dimorphic, with males having relatively larger snout-vent length, head width, head length, and tail length, while females have relatively larger abdomen length. Based on analysis of 93 studied stomachs, a total of 1359 prey items were identified. The most common prey items were formicid, lygaeid and tenebrionid. The two sexes did not differ in the relative proportions of prey size categories they consumed and the dietary overlap based on prey species was high (O = 0.989). In addition, the meal size, the volume or any maximal dimension of the largest prey item in the stomach was not explained by the sexes. According to our results, food niche divergence might not play an important role in the SSD evolution ofP. przewalskii.
基金Animal Ethics Committees at the Institute of Zoology, Chinese Academy of Sciences approved the ethics and protocol (IOZ14001) for the collection, handling, and husbandry of the study animalsBI J. H. (No.31660615) and SUN B. J. (No. 31870391 and 31500324) are supported by grants from the National Natural Science Foundation of China
文摘Sympatric reptiles are the ideal system for investigating temperature-driven coexistence. Understanding thermally physiological responses of sympatric lizards is necessary to reveal the physiological mechanisms that underpin the sympatric occurrence of reptiles. In this study, we used three lizard species, Eremias argus, E. multiocellata, and Phrynocephalus przewalskii, which are sympatric in the Inner Mongolia desert steppe, as a study system. By comparing their resting metabolic rates(RMR) and locomotion at different body temperatures, we aimed to better understand their physiological responses to thermal environments, which may explain the sympatric occurrence of these lizards. Our results showed that E. argus had significantly higher RMR and sprint speed than E. multiocellata, and higher RMR than P. przewalskii. In addition, the optimal temperature that maximized metabolic rates and locomotion for E. argus and E. multiocellata was 36°C, whereas for P. przewalskii it was 39°C. Our study revealed the physiological responses to temperatures that justify the sympatric occurrence of these lizards with different thermal and microhabitat preferences and active body temperatures. Eremias argus and E. multiocellata, which have lower body temperatures than P. przewalskii, depend on higher RMR and locomotion to compensate for their lower body temperatures in field conditions. Our study also highlights the importance of using an integrative approach, combining behavior and physiology, to explore the basis of sympatric occurrence in ectothermic species.