As a facility used for astronomical research, the Lijiang 2.4-m telescope of Yunnan Astronomical Observatories, requires the ability to change one auxiliary instrument with another in as short a time as possible. This...As a facility used for astronomical research, the Lijiang 2.4-m telescope of Yunnan Astronomical Observatories, requires the ability to change one auxiliary instrument with another in as short a time as possible. This arises from the need to quickly respond to scientific programs (e.g. transient observation, time domain studies) and changes in observation conditions (e.g. seeing and weather conditions). In this paper, we describe the design, construction and test of hardware and software in the rapid instrument exchange system (RIES) for the Cassegrain focal station of this telescope, which enables instruments to be quickly changed at night without much loss of observing time. Tests in the laboratory and at the telescope show that the image quality and pointing accuracy of RIES are satisfactory. With RIES, we observed the same Landolt standard stars almost at the same time with the Princeton Instruments VersArray 1300B Camera (PICCD) and the Yunnan Faint Object Spectrograph and Camera (YFOSC), while both were mounted at the Cassegrain focus. A quasi-simultaneous comparison shows that the image quality of the optical system inside the YFOSC is comparable with that provided by the PICCD.展开更多
We describe a new BVRI multicolor CCD photometric system situated at the prime focus of the 85-cm telescope at the Xinglong Station of NAOC. Atmospheric extinction effects, photometric accuracy and color calibration d...We describe a new BVRI multicolor CCD photometric system situated at the prime focus of the 85-cm telescope at the Xinglong Station of NAOC. Atmospheric extinction effects, photometric accuracy and color calibration dependence of the system are investigated. Additional attention was paid to giving observers guidance in estimating throughput, detection limit, signal-to-noise ratio and exposure time.展开更多
We describe the design and construction of a new rapid 3-channel CCD photometer, dedicated to simultaneous multicolor photometric observations of rapidly variable objects. This photometer is equipped on the 1-meter te...We describe the design and construction of a new rapid 3-channel CCD photometer, dedicated to simultaneous multicolor photometric observations of rapidly variable objects. This photometer is equipped on the 1-meter telescope at the Xinglong Observatory. It allows simultaneous imaging within fields of view of 18.81′×18.8′, 18.2′×17.6′ and 9.2′×9.2′ in the Sloan Digital Sky Survey's g′, r′ and i′ bands, respectively. The results of its calibration and performance are reported.展开更多
We develop a new calibration method in lab by measuring the absolute spectral irradiance responsivity of Sun photometer sun channel. The absolute power responsivity of Sun photometer is obtained when a white laser dou...We develop a new calibration method in lab by measuring the absolute spectral irradiance responsivity of Sun photometer sun channel. The absolute power responsivity of Sun photometer is obtained when a white laser double monochromator system serve as a source, and a standard transfer detector calibrated against cryogenic absolute radiometer is assembled to measure the absolute power of laser beam. The effective area of aperture is measured through laser raster scanning method, and the relative spectral irradiance responsivity of the corresponding channel is obtained by using tungsten-halogen lamps double monoehromator system. On the basis of the above results, the top of the atmosphere responsive constants V0 (500, 675, and 870 nm) are obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration results with that of CIMEL, France in November 2011, the relative differences are 4.38%, 2.23%, and 2.45%, respectively. The calibration uncertainty reaches to 2.048×10^-2, which shows a remarkable consistency with the Langley plot method. Further, our scheme can overcome the limits of space and atmospheric conditions which are only available at a high-altitude calibration site in particular date. The advantages lie in not only shortening the experiment period but also being of high precision. This new scheme definitely plays an important role in supporting the current and future sun photometry calibration activities which are significant to earth observation.展开更多
The surface morphology of lateral flow (LF) strip is examined by scanning electron microscope (SEM) and the diffuse reflection of porous strip with or without nanogold particles is investigated. Based on the scatt...The surface morphology of lateral flow (LF) strip is examined by scanning electron microscope (SEM) and the diffuse reflection of porous strip with or without nanogold particles is investigated. Based on the scattering and absorption of nanogold particles, a reflectance photometer is developed for quantification of LF strip with nanogold particles as reporter. The integration of reflection optical density is to indicate the signals of test line and control line. As an example, serial dilutions of microalbunminuria (MAU) solution are used to calibrate the performance of the reflectance photometer. The dose response curve is fitted with a four-parameter logistic mathematical model for the determination of an unknown MAU concentration. The response curve spans a dynamic range of 5 to 200 μg/ml. The developed reflectance photometer can realize simple and quantitative detection of analyte on nanogold-labeled LF strip.展开更多
The cluster M67 (= NGC 2682) in Cancer is a rich stellar cluster, usually classified as an open cluster. Using our own observations with the 0.4 m telescope, we show that M67 is a tight group of about 1200 stars. The ...The cluster M67 (= NGC 2682) in Cancer is a rich stellar cluster, usually classified as an open cluster. Using our own observations with the 0.4 m telescope, we show that M67 is a tight group of about 1200 stars. The actual radius of the cluster is about 3.1 pc and the average mass of a star in the system is about . We also show that the ratio of the mean kinetic energy of the cluster to its mean gravitational potential energy , while the value predicted by the virial theorem is equal to . So the system is a gravitationally bound. This value of is considered as an evidence of quasi-stability of the cluster and allows us to use the Chandrasekhar-Spitzer relaxation time for M67 Myr as a characteristic dynamical relaxation time of the system. As the cluster is almost twice older its half-life time , it is argued that M67 was in the past (about 4 Gyr ago, close to its forma-tion) a relatively small ( stars) globular cluster, but got “open cluster” shape due to the dynamical evapora-tion of the majority of its stars.展开更多
A new method for calibration of sun photometers based on Bouguer-Beer law is proposed. The developed basic equation of calibration makes it possible to formulate the derivative methods of calibration on the basis of p...A new method for calibration of sun photometers based on Bouguer-Beer law is proposed. The developed basic equation of calibration makes it possible to formulate the derivative methods of calibration on the basis of photometric measurements upon optical air masses, the ratio of which is an integer number.展开更多
The Lijiang 2.4-meter Telescope(LJT), the largest common-purpose optical telescope in China,has been available to the worldwide astronomical community since 2008. It is located at the Gaomeigu site,Lijiang Observatory...The Lijiang 2.4-meter Telescope(LJT), the largest common-purpose optical telescope in China,has been available to the worldwide astronomical community since 2008. It is located at the Gaomeigu site,Lijiang Observatory(LJO), in the southwest of China. The site has very good observational conditions.During its 10-year operation, several instruments have been equipped on the LJT. Astronomers can perform both photometric and spectral observations. The main scientific goals of LJT include recording photometric and spectral evolution of supernovae, reverberation mapping of active galactic nuclei, investigating the physical properties of binary stars and near-earth objects(comets and asteroids), and identification of exoplanets and all kinds of transients. Until now, the masses of 41 high accretion rate black holes have been measured, and more than 168 supernovae have been identified by the LJT. More than 190 papers related to the LJT have been published. In this paper, the general observation conditions of the Gaomeigu site is introduced at first. Then, the structure of the LJT is described in detail, including the optical, mechanical, motion and control system. The specification of all the instruments and some detailed parameters of the YFOSC is also presented. Finally, some important scientific results and future expectations are summarized.展开更多
In 2016,an exposure meter was installed on the Lijiang Fiber-fed High-Resolution Spectrograph to monitor the coupling of starlight to the science fiber during observations.Based on it,we investigated a method to estim...In 2016,an exposure meter was installed on the Lijiang Fiber-fed High-Resolution Spectrograph to monitor the coupling of starlight to the science fiber during observations.Based on it,we investigated a method to estimate the exposure flux of the CCD in real time by using the counts of the photomultiplier tubes(PMT)of the exposure meter,and developed a piece of software to optimize the control of the exposure time.First,by using flat-field lamp observations,we determined that there is a linear and proportional relationship between the total counts of the PMT and the exposure flux of the CCD.Second,using historical observations of different spectral types,the corresponding relational conversion factors were determined and obtained separately.Third,the method was validated using actual observation data,which showed that all values of the coefficient of determination were greater than 0.92.Finally,software was developed to display the counts of the PMT and the estimated exposure flux of the CCD in real-time during the observation,providing a visual reference for optimizing the exposure time control.展开更多
We report the design concept and performance of a compact, lightweight and economical imaging polarimeter, the Triple Range Imager and POLarimeter(TRIPOL), capable of simultaneous optical imagery and polarimetry. TRIP...We report the design concept and performance of a compact, lightweight and economical imaging polarimeter, the Triple Range Imager and POLarimeter(TRIPOL), capable of simultaneous optical imagery and polarimetry. TRIPOL splits the beam in wavelengths from 400 to 830 nm into g′-, r′-and i′-bands with two dichroic mirrors, and measures polarization with an achromatic half-waveplate and a wire grid polarizer. The simultaneity makes TRIPOL a useful tool for small telescopes for the photometry and polarimetry of time variable and wavelength dependent phenomena. TRIPOL is designed for a Cassegrain telescope with an aperture of^1 m. This paper presents the engineering considerations of TRIPOL and compares the expected with observed performance. Using the Lulin 1-m telescope and 100 seconds of integration, the limiting magnitudes are g′~19.0 mag, r′~18.5 mag and i′~18.0 mag with a signal-to-noise ratio of 10, in agreement with design expectation. The instrumental polarization is measured to be^0.3% in the three bands. Two applications, one to the star-forming cloud IC 5146 and the other to the young variable GM Cep, are presented as demonstrations.展开更多
基金Supported by the National Natural Science Foundation of China
文摘As a facility used for astronomical research, the Lijiang 2.4-m telescope of Yunnan Astronomical Observatories, requires the ability to change one auxiliary instrument with another in as short a time as possible. This arises from the need to quickly respond to scientific programs (e.g. transient observation, time domain studies) and changes in observation conditions (e.g. seeing and weather conditions). In this paper, we describe the design, construction and test of hardware and software in the rapid instrument exchange system (RIES) for the Cassegrain focal station of this telescope, which enables instruments to be quickly changed at night without much loss of observing time. Tests in the laboratory and at the telescope show that the image quality and pointing accuracy of RIES are satisfactory. With RIES, we observed the same Landolt standard stars almost at the same time with the Princeton Instruments VersArray 1300B Camera (PICCD) and the Yunnan Faint Object Spectrograph and Camera (YFOSC), while both were mounted at the Cassegrain focus. A quasi-simultaneous comparison shows that the image quality of the optical system inside the YFOSC is comparable with that provided by the PICCD.
基金Supported by the National Natural Science Foundation of China.
文摘We describe a new BVRI multicolor CCD photometric system situated at the prime focus of the 85-cm telescope at the Xinglong Station of NAOC. Atmospheric extinction effects, photometric accuracy and color calibration dependence of the system are investigated. Additional attention was paid to giving observers guidance in estimating throughput, detection limit, signal-to-noise ratio and exposure time.
文摘We describe the design and construction of a new rapid 3-channel CCD photometer, dedicated to simultaneous multicolor photometric observations of rapidly variable objects. This photometer is equipped on the 1-meter telescope at the Xinglong Observatory. It allows simultaneous imaging within fields of view of 18.81′×18.8′, 18.2′×17.6′ and 9.2′×9.2′ in the Sloan Digital Sky Survey's g′, r′ and i′ bands, respectively. The results of its calibration and performance are reported.
基金supported by the National 973 Project Fund(No.2010CB950801)the National Natural Science Foundation of China(No.61275173)
文摘We develop a new calibration method in lab by measuring the absolute spectral irradiance responsivity of Sun photometer sun channel. The absolute power responsivity of Sun photometer is obtained when a white laser double monochromator system serve as a source, and a standard transfer detector calibrated against cryogenic absolute radiometer is assembled to measure the absolute power of laser beam. The effective area of aperture is measured through laser raster scanning method, and the relative spectral irradiance responsivity of the corresponding channel is obtained by using tungsten-halogen lamps double monoehromator system. On the basis of the above results, the top of the atmosphere responsive constants V0 (500, 675, and 870 nm) are obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration results with that of CIMEL, France in November 2011, the relative differences are 4.38%, 2.23%, and 2.45%, respectively. The calibration uncertainty reaches to 2.048×10^-2, which shows a remarkable consistency with the Langley plot method. Further, our scheme can overcome the limits of space and atmospheric conditions which are only available at a high-altitude calibration site in particular date. The advantages lie in not only shortening the experiment period but also being of high precision. This new scheme definitely plays an important role in supporting the current and future sun photometry calibration activities which are significant to earth observation.
文摘The surface morphology of lateral flow (LF) strip is examined by scanning electron microscope (SEM) and the diffuse reflection of porous strip with or without nanogold particles is investigated. Based on the scattering and absorption of nanogold particles, a reflectance photometer is developed for quantification of LF strip with nanogold particles as reporter. The integration of reflection optical density is to indicate the signals of test line and control line. As an example, serial dilutions of microalbunminuria (MAU) solution are used to calibrate the performance of the reflectance photometer. The dose response curve is fitted with a four-parameter logistic mathematical model for the determination of an unknown MAU concentration. The response curve spans a dynamic range of 5 to 200 μg/ml. The developed reflectance photometer can realize simple and quantitative detection of analyte on nanogold-labeled LF strip.
文摘The cluster M67 (= NGC 2682) in Cancer is a rich stellar cluster, usually classified as an open cluster. Using our own observations with the 0.4 m telescope, we show that M67 is a tight group of about 1200 stars. The actual radius of the cluster is about 3.1 pc and the average mass of a star in the system is about . We also show that the ratio of the mean kinetic energy of the cluster to its mean gravitational potential energy , while the value predicted by the virial theorem is equal to . So the system is a gravitationally bound. This value of is considered as an evidence of quasi-stability of the cluster and allows us to use the Chandrasekhar-Spitzer relaxation time for M67 Myr as a characteristic dynamical relaxation time of the system. As the cluster is almost twice older its half-life time , it is argued that M67 was in the past (about 4 Gyr ago, close to its forma-tion) a relatively small ( stars) globular cluster, but got “open cluster” shape due to the dynamical evapora-tion of the majority of its stars.
文摘A new method for calibration of sun photometers based on Bouguer-Beer law is proposed. The developed basic equation of calibration makes it possible to formulate the derivative methods of calibration on the basis of photometric measurements upon optical air masses, the ratio of which is an integer number.
基金supported by the Joint Research Fund in Astronomy (U1631127, U1631129 and U1831204) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS)the National Natural Science Foundation of China (NSFC) (11473068, 11603072 and 11573067)+1 种基金the National Key R&D Program of China (2018YFA0404603)supported by the Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences (CAS)
文摘The Lijiang 2.4-meter Telescope(LJT), the largest common-purpose optical telescope in China,has been available to the worldwide astronomical community since 2008. It is located at the Gaomeigu site,Lijiang Observatory(LJO), in the southwest of China. The site has very good observational conditions.During its 10-year operation, several instruments have been equipped on the LJT. Astronomers can perform both photometric and spectral observations. The main scientific goals of LJT include recording photometric and spectral evolution of supernovae, reverberation mapping of active galactic nuclei, investigating the physical properties of binary stars and near-earth objects(comets and asteroids), and identification of exoplanets and all kinds of transients. Until now, the masses of 41 high accretion rate black holes have been measured, and more than 168 supernovae have been identified by the LJT. More than 190 papers related to the LJT have been published. In this paper, the general observation conditions of the Gaomeigu site is introduced at first. Then, the structure of the LJT is described in detail, including the optical, mechanical, motion and control system. The specification of all the instruments and some detailed parameters of the YFOSC is also presented. Finally, some important scientific results and future expectations are summarized.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.11803088,12003068 and 12063002)Civil Aerospace preresearch project D020302+2 种基金the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B10Yunnan Science Foundation of China(202001AU070077)SinoGerman Scientist Mobility Programme M-0086。
文摘In 2016,an exposure meter was installed on the Lijiang Fiber-fed High-Resolution Spectrograph to monitor the coupling of starlight to the science fiber during observations.Based on it,we investigated a method to estimate the exposure flux of the CCD in real time by using the counts of the photomultiplier tubes(PMT)of the exposure meter,and developed a piece of software to optimize the control of the exposure time.First,by using flat-field lamp observations,we determined that there is a linear and proportional relationship between the total counts of the PMT and the exposure flux of the CCD.Second,using historical observations of different spectral types,the corresponding relational conversion factors were determined and obtained separately.Third,the method was validated using actual observation data,which showed that all values of the coefficient of determination were greater than 0.92.Finally,software was developed to display the counts of the PMT and the estimated exposure flux of the CCD in real-time during the observation,providing a visual reference for optimizing the exposure time control.
基金supported by Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports and Technology of Japan
文摘We report the design concept and performance of a compact, lightweight and economical imaging polarimeter, the Triple Range Imager and POLarimeter(TRIPOL), capable of simultaneous optical imagery and polarimetry. TRIPOL splits the beam in wavelengths from 400 to 830 nm into g′-, r′-and i′-bands with two dichroic mirrors, and measures polarization with an achromatic half-waveplate and a wire grid polarizer. The simultaneity makes TRIPOL a useful tool for small telescopes for the photometry and polarimetry of time variable and wavelength dependent phenomena. TRIPOL is designed for a Cassegrain telescope with an aperture of^1 m. This paper presents the engineering considerations of TRIPOL and compares the expected with observed performance. Using the Lulin 1-m telescope and 100 seconds of integration, the limiting magnitudes are g′~19.0 mag, r′~18.5 mag and i′~18.0 mag with a signal-to-noise ratio of 10, in agreement with design expectation. The instrumental polarization is measured to be^0.3% in the three bands. Two applications, one to the star-forming cloud IC 5146 and the other to the young variable GM Cep, are presented as demonstrations.