At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL ...At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL mechanism for these kinds of carbon materials; doing so can guide the development of effective synthesis routes and novel applications. This review will focus on the PL mechanism of CDs. Three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs). Four reasonable PL mechanisms have been confirmed: the quantum confinement effect or conjugated 7x-domains, which are determined by the carbon core; the surface state, which is determined by hybridization of the carbon backbone and the connected chemical groups; the molecule state, which is determined solely by the fluorescent molecules connected on the surface or interior of the CDs; and the crosslink- enhanced emission (CEE) effect. To give a thorough summary, the category and synthesis routes, as well as the chemical/physical properties for the CDs, are briefly introduced in advance.展开更多
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage,and sensing applications, owing to their excellent pho...Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage,and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties,as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them.Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers,nitroaromatic explosives, pollutants, vitamins, and drugs.Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.展开更多
The changes in photoluminescence and FTIR spectra of porous silicon subjected to oxidation were exdrined. With the increase of okidizing duxation, the relative amount of the Si-H2 surface species on PS decreases even ...The changes in photoluminescence and FTIR spectra of porous silicon subjected to oxidation were exdrined. With the increase of okidizing duxation, the relative amount of the Si-H2 surface species on PS decreases even though the photoluminescence intensity increases. the result suggests that it isn’t SiH2 but Si-O and Si-O-Si on theinterface of PS play a key role in enhancing the pllotoluminescence. A complete photoluminescence mechanism should consider the influence of su-rface state of porous silicon based on the quantum codriement effect model.展开更多
Red-emissive carbon dots(R-CDs)have been widely studied because of their potential application in tissue imaging and optoelectronic devices.At present,most R-CDs are synthesized by using aromatic precursors,but the sy...Red-emissive carbon dots(R-CDs)have been widely studied because of their potential application in tissue imaging and optoelectronic devices.At present,most R-CDs are synthesized by using aromatic precursors,but the synthesis of R-CDs from non-aromatic precursors is challenging,and the emission mechanism remains unclear.Herein,different R-CDs were rationally synthesized using citric acid(CA),a prototype non-aromatic precursor,with the assistance of ammonia.Their structural evolution and optical mechanism were investigated.The addition of NH_(3)·H_(2)O played a key role in the synthesis of CA-based R-CDs,which shifted the emission wavelength of CA-based CDs from 423 to 667 nm.Mass spectrometry(MS)analysis indicated that the amino groups served as N dopants and promoted the formation of localized conjugated domains through an intermolecular amide ring,thereby inducing a significant emission redshift.The red-emissive mechanism of CDs was further confirmed by control experiments using other CA-like molecules(e.g.,aconitic acid,tartaric acid,aspartic acid,malic acid,and maleic acid)as precursors.MS,nuclear magnetic resonance characterization,and computational modeling revealed that the main carbon chain length of CA-like precursors tailored the cyclization mode,leading to hexatomic,pentatomic,unstable three/four-membered ring systems or cyclization failure.Among these systems,the hexatomic ring led to the largest emission redshift(244 nm,known for CA-based CDs).This work determined the origin of red emission in CA-based CDs,which would guide research on the controlled synthesis of R-CDs from other non-aromatic precursors.展开更多
Fluorescent nanomaterials have attracted much attention,due to their unique luminescent properties and promis-ing applications in biomedical areas.In this study,lignin basedfluorescent nanoparticles(LFNP)with high yiel...Fluorescent nanomaterials have attracted much attention,due to their unique luminescent properties and promis-ing applications in biomedical areas.In this study,lignin basedfluorescent nanoparticles(LFNP)with high yield(up to 32.4%)were prepared from lignin nanoparticles(LNP)by one-pot hydrothermal method with ethylene-diamine(EDA)and citric acid.Morphology and chemical structure of LFNP were investigated by SEM,FT-IR,and zeta potential,and it was found that the structure of LFNP changed with the increase of citric acid addition.LFNP showed the highestfluorescence intensity under UV excitation at wavelengths of 375–385 nm,with emis-sion wavelengths between 454–465 nm,and exhibited strong photoluminescence behavior.Meanwhile,with the increase of citric acid content,the energy gap(ΔE)gradually decreased from 3.87 to 3.14 eV,which corresponds to the gradual enhancement offluorescence performance.LFNP also exhibited excellent antioxidant activity,with DPPH free radical scavenging rate increased from 80.8%for LNP up to 96.7%for LFNP,confirming the great potential of these materials for application in biomedicine and cosmetic health care.展开更多
文摘At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL mechanism for these kinds of carbon materials; doing so can guide the development of effective synthesis routes and novel applications. This review will focus on the PL mechanism of CDs. Three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs). Four reasonable PL mechanisms have been confirmed: the quantum confinement effect or conjugated 7x-domains, which are determined by the carbon core; the surface state, which is determined by hybridization of the carbon backbone and the connected chemical groups; the molecule state, which is determined solely by the fluorescent molecules connected on the surface or interior of the CDs; and the crosslink- enhanced emission (CEE) effect. To give a thorough summary, the category and synthesis routes, as well as the chemical/physical properties for the CDs, are briefly introduced in advance.
基金supported by NTUA*STAR Silicon Technologies Centre of Excellence under the program Grant (No.11235100003)Grants Tier 2 MOE2017-T2-2-002 (No.M402110000) from Ministry of Educationthe NRF-ANR Joint Call 2017 Research Grant (No. M419640000) from the National Research Foundation,Singapore
文摘Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage,and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties,as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them.Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers,nitroaromatic explosives, pollutants, vitamins, and drugs.Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.
基金supported by the Special Nanotechnology Project of Shanghai Science and Technology Commission, China (0852nm00700) Shanghai Leading Academic Discipline Project, China (J50101).~~
文摘The changes in photoluminescence and FTIR spectra of porous silicon subjected to oxidation were exdrined. With the increase of okidizing duxation, the relative amount of the Si-H2 surface species on PS decreases even though the photoluminescence intensity increases. the result suggests that it isn’t SiH2 but Si-O and Si-O-Si on theinterface of PS play a key role in enhancing the pllotoluminescence. A complete photoluminescence mechanism should consider the influence of su-rface state of porous silicon based on the quantum codriement effect model.
基金supported by the National Natural Science Foundation of China(52122308,21905253,51973200,and 52103239)Natural Science Foundation of Henan Province(202300410372)Henan Postdoctoral Foundation。
文摘Red-emissive carbon dots(R-CDs)have been widely studied because of their potential application in tissue imaging and optoelectronic devices.At present,most R-CDs are synthesized by using aromatic precursors,but the synthesis of R-CDs from non-aromatic precursors is challenging,and the emission mechanism remains unclear.Herein,different R-CDs were rationally synthesized using citric acid(CA),a prototype non-aromatic precursor,with the assistance of ammonia.Their structural evolution and optical mechanism were investigated.The addition of NH_(3)·H_(2)O played a key role in the synthesis of CA-based R-CDs,which shifted the emission wavelength of CA-based CDs from 423 to 667 nm.Mass spectrometry(MS)analysis indicated that the amino groups served as N dopants and promoted the formation of localized conjugated domains through an intermolecular amide ring,thereby inducing a significant emission redshift.The red-emissive mechanism of CDs was further confirmed by control experiments using other CA-like molecules(e.g.,aconitic acid,tartaric acid,aspartic acid,malic acid,and maleic acid)as precursors.MS,nuclear magnetic resonance characterization,and computational modeling revealed that the main carbon chain length of CA-like precursors tailored the cyclization mode,leading to hexatomic,pentatomic,unstable three/four-membered ring systems or cyclization failure.Among these systems,the hexatomic ring led to the largest emission redshift(244 nm,known for CA-based CDs).This work determined the origin of red emission in CA-based CDs,which would guide research on the controlled synthesis of R-CDs from other non-aromatic precursors.
基金This work was financially supported by National Natural Science Foundation of China(51903106)State Administration of Foreign Experts Affairs(G2021144006L).
文摘Fluorescent nanomaterials have attracted much attention,due to their unique luminescent properties and promis-ing applications in biomedical areas.In this study,lignin basedfluorescent nanoparticles(LFNP)with high yield(up to 32.4%)were prepared from lignin nanoparticles(LNP)by one-pot hydrothermal method with ethylene-diamine(EDA)and citric acid.Morphology and chemical structure of LFNP were investigated by SEM,FT-IR,and zeta potential,and it was found that the structure of LFNP changed with the increase of citric acid addition.LFNP showed the highestfluorescence intensity under UV excitation at wavelengths of 375–385 nm,with emis-sion wavelengths between 454–465 nm,and exhibited strong photoluminescence behavior.Meanwhile,with the increase of citric acid content,the energy gap(ΔE)gradually decreased from 3.87 to 3.14 eV,which corresponds to the gradual enhancement offluorescence performance.LFNP also exhibited excellent antioxidant activity,with DPPH free radical scavenging rate increased from 80.8%for LNP up to 96.7%for LFNP,confirming the great potential of these materials for application in biomedicine and cosmetic health care.