Electrochemical water splitting is an efficient and clean strategy to produce sustainable energy produc- tions (especially hydrogen) from earth-abundant water. Recently, layered double hydroxide (LDH)-based materi...Electrochemical water splitting is an efficient and clean strategy to produce sustainable energy produc- tions (especially hydrogen) from earth-abundant water. Recently, layered double hydroxide (LDH)-based materi- als have gained increasing attentions as promising electrocatalysts for water splitting. Designing LDHs into hierarchical architectures (e.g., core-shell nanoarrays) is one of the most promising strategies to improve their electrocatalytic performances, owing to the abundant exposure of active sites. This review mainly focuses on recent progress on the synthesis of hierarchical LDH-based core-shell nanoarrays as high performance electrocatalysts for electrochemical water splitting. By classifying different nanostructured materials combined with LDHs, a number of LDH-based core-shell nanoarrays have been developed and their synthesis strategies, structural characters and electrochemical performances are rationally described. Moreover, further developments and challenges in devel- oping promising electrocatalysts based on hierarchical nanostructured LDHs are covered from the viewpoint of fundamental research and practical applications.展开更多
文摘Electrochemical water splitting is an efficient and clean strategy to produce sustainable energy produc- tions (especially hydrogen) from earth-abundant water. Recently, layered double hydroxide (LDH)-based materi- als have gained increasing attentions as promising electrocatalysts for water splitting. Designing LDHs into hierarchical architectures (e.g., core-shell nanoarrays) is one of the most promising strategies to improve their electrocatalytic performances, owing to the abundant exposure of active sites. This review mainly focuses on recent progress on the synthesis of hierarchical LDH-based core-shell nanoarrays as high performance electrocatalysts for electrochemical water splitting. By classifying different nanostructured materials combined with LDHs, a number of LDH-based core-shell nanoarrays have been developed and their synthesis strategies, structural characters and electrochemical performances are rationally described. Moreover, further developments and challenges in devel- oping promising electrocatalysts based on hierarchical nanostructured LDHs are covered from the viewpoint of fundamental research and practical applications.