Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. C...Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. Compared with other commonly used solution methods, this process avoids high temperature and electric power as well as supporting agents to make it simple and cost-effective. The as-fabricated ZnO nanosheet films have uniform hexagonal wurtzite structure. The photoelectrochemical(PEC) cell based on ZnO nanosheet film/ITO photoelectrode was also fabricated and its performance was improved by optimizing the solution concentration. A higher photocurrent density of*500 l A cm^(-2)under AM 1.5 G simulated illumination of 100 m W cm^(-2)with zero bias potential(vs. Ag/AgCl electrode) was obtained, which may ascribe to the increased surface-to-volume ratio of disordered Zn O nanosheet arrays. Our developed method may be used to deposit other oxide semiconductors, and the Zn O nanosheet film/ITO PEC cell can be used to design low-cost optoelectronic and photoelectrochemical devices.展开更多
基金supported by the National Major Basic Research Project of 2012CB934302the National 863 Program2011AA050518+1 种基金the Natural Science Foundation of China(Grant No.1117419711574203 and 61234005)
文摘Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. Compared with other commonly used solution methods, this process avoids high temperature and electric power as well as supporting agents to make it simple and cost-effective. The as-fabricated ZnO nanosheet films have uniform hexagonal wurtzite structure. The photoelectrochemical(PEC) cell based on ZnO nanosheet film/ITO photoelectrode was also fabricated and its performance was improved by optimizing the solution concentration. A higher photocurrent density of*500 l A cm^(-2)under AM 1.5 G simulated illumination of 100 m W cm^(-2)with zero bias potential(vs. Ag/AgCl electrode) was obtained, which may ascribe to the increased surface-to-volume ratio of disordered Zn O nanosheet arrays. Our developed method may be used to deposit other oxide semiconductors, and the Zn O nanosheet film/ITO PEC cell can be used to design low-cost optoelectronic and photoelectrochemical devices.
基金supported by the National Key Basic Research Program of China (973) (2011CB933302, 2010CB933703)Shanghai Science and Technology Commission, China (1052nm01800)Key Disciplines Innovative Personnel Training Plan of Fudan University, China~~