In this work,high-stability _[4]H-SiC avalanche photodiodes[APDs]for ultraviolet[UV]detection at high temperatures are fabricated and investigated.With the temperature increasing from room temperature to 150℃,a very ...In this work,high-stability _[4]H-SiC avalanche photodiodes[APDs]for ultraviolet[UV]detection at high temperatures are fabricated and investigated.With the temperature increasing from room temperature to 150℃,a very small temperature coefficient of 7.4 m V/℃is achieved for the avalanche breakdown voltage of devices.For the first time,the stability of 4H-SiC APDs is verified based on an accelerated aging test with harsh stress conditions.Three different stress conditions are selected with the temperatures and reverse currents of 175℃/100μA,200℃/100μA,and 200℃/500μA,respectively.The results show that our 4H-SiC APD exhibits robust high-temperature performance and can even endure more than120 hours at the harsh aging condition of 200℃/500μA,which indicates that 4H-SiC APDs are very stable and reliable for applications at high temperatures.展开更多
基金supported by the National Natural Science Foundation of China(No.61974134)the Hebei Province Outstanding Youth Fund(No.F2021516001)。
文摘In this work,high-stability _[4]H-SiC avalanche photodiodes[APDs]for ultraviolet[UV]detection at high temperatures are fabricated and investigated.With the temperature increasing from room temperature to 150℃,a very small temperature coefficient of 7.4 m V/℃is achieved for the avalanche breakdown voltage of devices.For the first time,the stability of 4H-SiC APDs is verified based on an accelerated aging test with harsh stress conditions.Three different stress conditions are selected with the temperatures and reverse currents of 175℃/100μA,200℃/100μA,and 200℃/500μA,respectively.The results show that our 4H-SiC APD exhibits robust high-temperature performance and can even endure more than120 hours at the harsh aging condition of 200℃/500μA,which indicates that 4H-SiC APDs are very stable and reliable for applications at high temperatures.