Semi-insulating gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS) have great potential for high voltage switching application, however, the utility is restricted by surface flashover which wouI...Semi-insulating gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS) have great potential for high voltage switching application, however, the utility is restricted by surface flashover which wouId result in breakdown. In this paper, a model of photo-activated charge wave was proposed based on the theory of photo-activated charge domain (PACD) in GaAs PCSS, and moderate suppression of PACD formation by loading the semiconductor surface with dielectric material was investigated theoretically and experimentally. Current as high as 3.7 kA was obtained at 28 kV, implying that this method can effectively inhibit the surface flashover and improve the service life of DC charged GaAs PCSS.展开更多
基金supported by the Key Project of National Natural Science Foundation of China(No.50837005)the National Science Foundation of China(Nos.10876026,51107099)+3 种基金the Foundation of the State Key Laboratory of Electrical Insulation for Power Equipment (No.EIPE09203)the Natural Science Foundation of Shaanxi Province(No.2010JM7003)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.11JK0540)the Foundation for Outstanding Doctoral Dissertation of Xi'an University of Technology(105-210904)
文摘Semi-insulating gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS) have great potential for high voltage switching application, however, the utility is restricted by surface flashover which wouId result in breakdown. In this paper, a model of photo-activated charge wave was proposed based on the theory of photo-activated charge domain (PACD) in GaAs PCSS, and moderate suppression of PACD formation by loading the semiconductor surface with dielectric material was investigated theoretically and experimentally. Current as high as 3.7 kA was obtained at 28 kV, implying that this method can effectively inhibit the surface flashover and improve the service life of DC charged GaAs PCSS.