A new type of photocatalytic La^(3+)–Zn^(2+)–Al^(3+)–MoO_4^(2-) layered double hydroxide(LDH) material(molar ratio, La/Zn/Al = 1:7:2) was prepared by a complexing agent-assisted homogeneous precipitation technique....A new type of photocatalytic La^(3+)–Zn^(2+)–Al^(3+)–MoO_4^(2-) layered double hydroxide(LDH) material(molar ratio, La/Zn/Al = 1:7:2) was prepared by a complexing agent-assisted homogeneous precipitation technique. The structure of the prepared LDH material was systematically studied. Under UV irradiation, the desulfurization efficiency of the LDH material was 87% in 2 h. For La^(3+)–Zn^(2+)–Al^(3+)–MoO_4^(2-) LDH material, the introduction of MoO_4^(2-) increased the interlayer space for promoting the adsorption of benzothiophene(BT), and MoO_4^(2-) might provide active sites for the oxidation of BT, resulting in the high desulfurization efficiency.展开更多
The room temperature stabled monoclinic KNbO3 nanowires were found to act as photocatalyst for photocatalytic methane production and dye degradation in this work. Higher activities have been observed for monoclinic ph...The room temperature stabled monoclinic KNbO3 nanowires were found to act as photocatalyst for photocatalytic methane production and dye degradation in this work. Higher activities have been observed for monoclinic phase compared to the reference(orthorhombic phase). In the photoreduction of CO2 reaction, the monoclinic KNbO3 nanowires exhibited a CH4 evolution rate of 0.025 μmol·g-1·h-1, which was higher than 0.021 μmol·g-1·h-1 of orthorhombic KNbO3 nanowires. In the photodegradation of rhodamine B(Rh B), almost all the Rh B were degraded after 90 min light illumination for monoclinic KNbO3 nanowires. But for orthorhombic KNbO3 nanowires, the concentration of Rh B only decreased to 62% of the initial value.展开更多
采用第一性原理计算方法详细研究了碳原子掺入WO3后体系的能带结构、态密度、导带边和价带边的位置的变化.考虑了碳原子处在间隙位置和碳原子替换氧原子两种情况.计算结果表明,碳原子替换氧原子时,体系是自旋极化的,在带隙中产生非常明...采用第一性原理计算方法详细研究了碳原子掺入WO3后体系的能带结构、态密度、导带边和价带边的位置的变化.考虑了碳原子处在间隙位置和碳原子替换氧原子两种情况.计算结果表明,碳原子替换氧原子时,体系是自旋极化的,在带隙中产生非常明显的C-2p杂质带.自旋向上部分带隙减小了0.92 e V,自旋向下部分带隙减小了0.08 e V.而碳处在间隙位置时,体系是非自旋极化的,碳原子倾向于与一个氧原子成键,带隙减小了0.2e V,有利于可见光的吸收.形成能计算表明,碳原子处在间隙位置掺杂更稳定.展开更多
文摘A new type of photocatalytic La^(3+)–Zn^(2+)–Al^(3+)–MoO_4^(2-) layered double hydroxide(LDH) material(molar ratio, La/Zn/Al = 1:7:2) was prepared by a complexing agent-assisted homogeneous precipitation technique. The structure of the prepared LDH material was systematically studied. Under UV irradiation, the desulfurization efficiency of the LDH material was 87% in 2 h. For La^(3+)–Zn^(2+)–Al^(3+)–MoO_4^(2-) LDH material, the introduction of MoO_4^(2-) increased the interlayer space for promoting the adsorption of benzothiophene(BT), and MoO_4^(2-) might provide active sites for the oxidation of BT, resulting in the high desulfurization efficiency.
基金supported by the National Basic Research Program of China(973 Program,2013CB632400)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(Nos.51272102 and 21103070)
文摘The room temperature stabled monoclinic KNbO3 nanowires were found to act as photocatalyst for photocatalytic methane production and dye degradation in this work. Higher activities have been observed for monoclinic phase compared to the reference(orthorhombic phase). In the photoreduction of CO2 reaction, the monoclinic KNbO3 nanowires exhibited a CH4 evolution rate of 0.025 μmol·g-1·h-1, which was higher than 0.021 μmol·g-1·h-1 of orthorhombic KNbO3 nanowires. In the photodegradation of rhodamine B(Rh B), almost all the Rh B were degraded after 90 min light illumination for monoclinic KNbO3 nanowires. But for orthorhombic KNbO3 nanowires, the concentration of Rh B only decreased to 62% of the initial value.
文摘采用第一性原理计算方法详细研究了碳原子掺入WO3后体系的能带结构、态密度、导带边和价带边的位置的变化.考虑了碳原子处在间隙位置和碳原子替换氧原子两种情况.计算结果表明,碳原子替换氧原子时,体系是自旋极化的,在带隙中产生非常明显的C-2p杂质带.自旋向上部分带隙减小了0.92 e V,自旋向下部分带隙减小了0.08 e V.而碳处在间隙位置时,体系是非自旋极化的,碳原子倾向于与一个氧原子成键,带隙减小了0.2e V,有利于可见光的吸收.形成能计算表明,碳原子处在间隙位置掺杂更稳定.