It was established that application of bipolar membrane in a direct borohydride fuel cell (DBFC) with H2O2 co-generation enabled to keep constant pH in catholyte within 2.5 - 3.2 limits, which allowed us to carry out ...It was established that application of bipolar membrane in a direct borohydride fuel cell (DBFC) with H2O2 co-generation enabled to keep constant pH in catholyte within 2.5 - 3.2 limits, which allowed us to carry out treatment of water polluted by organic compounds in fuel cell catholyte. Treatment of water was carried out by electro-Fenton and photo-electro-Fenton methods. With the view of efficiency, photo-electro-Fenton method of treatment was the most efficient, which enabled to decrease COD of catholytes containing (in each case) phenol, valsaren, 400 g/L dymethoate (BI-58) and valsaciper from 500 ppm to 30, 11, 9 and 3 ppm, respectively after 180 min treatment. By increasing the catholyte temperature from 20℃?to 40℃?in the same period, phenol COD fell to 5 ppm.展开更多
A gas diffusion electrode (air electrode) with a high current efficiency of electro\|synthesizing H 2 O 2 using O 2 in air was prepared. The several systems with air electrode as cathode of ele ctro\|s...A gas diffusion electrode (air electrode) with a high current efficiency of electro\|synthesizing H 2 O 2 using O 2 in air was prepared. The several systems with air electrode as cathode of ele ctro\|synthesizing H 2 O 2 on the reaction spot for degrading aniline in aqueous--electro\|Fenton system, photo\|excitation electro\|H 2 O 2 system and photo\|electro\|Fenton system, were developed. Th e rates of decomposition of H 2 O 2 and mineralization of anil ine were experimentally measured respectively under different conditions, and th e results indicated there has an excellent parallel relation between decompositi on rate of H 2 O 2 and mineralization rate of aniline. Especia lly, photo\|electro\|Fenton system, where H 2 O 2 is decompose d the fastest, is the best system of oxidizing and degrading organic toxicants. Compared photo\|electro\|Fenton system with photo\|Fenton system, important role is revealed in the interface of air electrode. In this paper, the mineralizatio n mechanism of aniline in the photo\|electro\|Fenton system was also discussed.展开更多
文摘It was established that application of bipolar membrane in a direct borohydride fuel cell (DBFC) with H2O2 co-generation enabled to keep constant pH in catholyte within 2.5 - 3.2 limits, which allowed us to carry out treatment of water polluted by organic compounds in fuel cell catholyte. Treatment of water was carried out by electro-Fenton and photo-electro-Fenton methods. With the view of efficiency, photo-electro-Fenton method of treatment was the most efficient, which enabled to decrease COD of catholytes containing (in each case) phenol, valsaren, 400 g/L dymethoate (BI-58) and valsaciper from 500 ppm to 30, 11, 9 and 3 ppm, respectively after 180 min treatment. By increasing the catholyte temperature from 20℃?to 40℃?in the same period, phenol COD fell to 5 ppm.
文摘A gas diffusion electrode (air electrode) with a high current efficiency of electro\|synthesizing H 2 O 2 using O 2 in air was prepared. The several systems with air electrode as cathode of ele ctro\|synthesizing H 2 O 2 on the reaction spot for degrading aniline in aqueous--electro\|Fenton system, photo\|excitation electro\|H 2 O 2 system and photo\|electro\|Fenton system, were developed. Th e rates of decomposition of H 2 O 2 and mineralization of anil ine were experimentally measured respectively under different conditions, and th e results indicated there has an excellent parallel relation between decompositi on rate of H 2 O 2 and mineralization rate of aniline. Especia lly, photo\|electro\|Fenton system, where H 2 O 2 is decompose d the fastest, is the best system of oxidizing and degrading organic toxicants. Compared photo\|electro\|Fenton system with photo\|Fenton system, important role is revealed in the interface of air electrode. In this paper, the mineralizatio n mechanism of aniline in the photo\|electro\|Fenton system was also discussed.