The releasing characteristics of phosphorus, nitrogen compounds, organics, and some metal cations during thermal treatment of excess sludge were investigated. It was found that during heating not only phosphorus, but ...The releasing characteristics of phosphorus, nitrogen compounds, organics, and some metal cations during thermal treatment of excess sludge were investigated. It was found that during heating not only phosphorus, but also nitrogen compounds, organics, and some metal cations could be released in abundance. The maximum orthophosphate (ortho-P) release of about 90 mg/L in concentration was observed at 50℃ in 1 h. Except for volatile fatty acids (VFAs), comparatively little total nitrogen (TN), total organic carbon (TOC), and metal cations were released at the same time. Such results might favor further process of phosphorus recovery. VFAs were considerably released only at 50℃. Acetic, butyric, and propionic acid were the most abundant components in turn and their releasing profiles exhibited good linear relationship with time (R2 = 0.9977, 0.9624, and 0.8908, respectively). The concentrations of Mg^2+ and K^+ increased with time and temperature during thermal treatment, but Ca^2+ decreased. The release of Mg^2+ and K^+ agreed well with TP release (R^2 = 0.9892 and 0.9476, respectively). Temperature in the experimental range had very little impact on the linear relationships, especially of Mg^2+. Moreover, the parameter of mixed liquor suspended solids (MLSS) was found to be an important factor for thermal sludge treatment as the released ortho-P and total phosphorus (TP) at 50℃ increased more than one-fold when MLSS was increased from 4000 to 8000 mg/L.展开更多
Phosphorus(P) is a limited resource, which can neither be synthesized nor substituted in its essential functions as nutrient. Currently explored and economically feasible global reserves may be depleted within gener...Phosphorus(P) is a limited resource, which can neither be synthesized nor substituted in its essential functions as nutrient. Currently explored and economically feasible global reserves may be depleted within generations. China is the largest phosphate fertilizer producing and consuming country in the world. China’s municipal wastewater contains up to 293,163 Mg year of phosphorus, which equals approximately 5.5% of the chemical fertilizer phosphorus consumed in China. Phosphorus in wastewater can be seen not only as a source of pollution to be reduced, but also as a limited resource to be recovered. Based upon existing phosphorus-recovery technologies and the current wastewater infrastructure in China, three options for phosphorus recovery from sewage sludge, sludge ash and the fertilizer industry were analyzed according to the specific conditions in China.展开更多
Ashes from sewage sludge incineration have a high phosphorus content, approximately 8% (W/W), which indicates a potential resource of the limiting nutrient. Incineration of sewage sludge with subsequent recovery of ...Ashes from sewage sludge incineration have a high phosphorus content, approximately 8% (W/W), which indicates a potential resource of the limiting nutrient. Incineration of sewage sludge with subsequent recovery of phosphorus is a relatively new sludge treatment technique. In this article, the leaching of phosphorus by using sulfuric acid as well as hydrochloric acid by means of several batch experiments was presented. At the same time a selective recovery of phosphorus by adsorption was also discussed. The effects of acid concentration, temperature and time on extraction were studied. The phosphorus leaching increased with the increase in acid concentration and temperature. Kinetic studies showed that the complete leaching of phosphorus took place in less than 4 h. Selective adsorption of phosphorus by using orange waste gel provided a hint for recovery of this natural resource, which eventually could meet the ever-increasing requirement for phosphorus. The overall results indicated that the incinerated sewage sludge ash can be treated with acid to efficiently recover phosphorus and thus can be considered a potentially renewable source of phosphorus.展开更多
文摘The releasing characteristics of phosphorus, nitrogen compounds, organics, and some metal cations during thermal treatment of excess sludge were investigated. It was found that during heating not only phosphorus, but also nitrogen compounds, organics, and some metal cations could be released in abundance. The maximum orthophosphate (ortho-P) release of about 90 mg/L in concentration was observed at 50℃ in 1 h. Except for volatile fatty acids (VFAs), comparatively little total nitrogen (TN), total organic carbon (TOC), and metal cations were released at the same time. Such results might favor further process of phosphorus recovery. VFAs were considerably released only at 50℃. Acetic, butyric, and propionic acid were the most abundant components in turn and their releasing profiles exhibited good linear relationship with time (R2 = 0.9977, 0.9624, and 0.8908, respectively). The concentrations of Mg^2+ and K^+ increased with time and temperature during thermal treatment, but Ca^2+ decreased. The release of Mg^2+ and K^+ agreed well with TP release (R^2 = 0.9892 and 0.9476, respectively). Temperature in the experimental range had very little impact on the linear relationships, especially of Mg^2+. Moreover, the parameter of mixed liquor suspended solids (MLSS) was found to be an important factor for thermal sludge treatment as the released ortho-P and total phosphorus (TP) at 50℃ increased more than one-fold when MLSS was increased from 4000 to 8000 mg/L.
基金supported by the Chinese Government Graduate Student Overseas Study Program by the China Scholarship Council(CSC)
文摘Phosphorus(P) is a limited resource, which can neither be synthesized nor substituted in its essential functions as nutrient. Currently explored and economically feasible global reserves may be depleted within generations. China is the largest phosphate fertilizer producing and consuming country in the world. China’s municipal wastewater contains up to 293,163 Mg year of phosphorus, which equals approximately 5.5% of the chemical fertilizer phosphorus consumed in China. Phosphorus in wastewater can be seen not only as a source of pollution to be reduced, but also as a limited resource to be recovered. Based upon existing phosphorus-recovery technologies and the current wastewater infrastructure in China, three options for phosphorus recovery from sewage sludge, sludge ash and the fertilizer industry were analyzed according to the specific conditions in China.
基金supported by a Grant-in-Aid for Scientific Research of Waste Treatment from the Ministry of Environment of Japan (No. K2072)
文摘Ashes from sewage sludge incineration have a high phosphorus content, approximately 8% (W/W), which indicates a potential resource of the limiting nutrient. Incineration of sewage sludge with subsequent recovery of phosphorus is a relatively new sludge treatment technique. In this article, the leaching of phosphorus by using sulfuric acid as well as hydrochloric acid by means of several batch experiments was presented. At the same time a selective recovery of phosphorus by adsorption was also discussed. The effects of acid concentration, temperature and time on extraction were studied. The phosphorus leaching increased with the increase in acid concentration and temperature. Kinetic studies showed that the complete leaching of phosphorus took place in less than 4 h. Selective adsorption of phosphorus by using orange waste gel provided a hint for recovery of this natural resource, which eventually could meet the ever-increasing requirement for phosphorus. The overall results indicated that the incinerated sewage sludge ash can be treated with acid to efficiently recover phosphorus and thus can be considered a potentially renewable source of phosphorus.