Photodamage of some pigments in the isolated photosystem Ⅱ (PS Ⅱ) reaction center D1/D2/Cyt b559 complex from spinach has been investigated by means of high performance liquid chromatography. The light induced damag...Photodamage of some pigments in the isolated photosystem Ⅱ (PS Ⅱ) reaction center D1/D2/Cyt b559 complex from spinach has been investigated by means of high performance liquid chromatography. The light induced damage of pheophytin a (pheo a) in the complex was observed for the first time. The content of pheo a decreased about 47% by illumination, suggesting only one of the two pheo a molecules in the PSⅡ reaction center complex was damaged. No damage of β carotene was found.展开更多
Photodamage of pheophytin a (pheo a) in the isolated photosystem Ⅱ (PSⅡ) reaction center D1/D2/Cyt b559 complex from spinach has been investigated by high performance liquid chromatographic method in detail. The res...Photodamage of pheophytin a (pheo a) in the isolated photosystem Ⅱ (PSⅡ) reaction center D1/D2/Cyt b559 complex from spinach has been investigated by high performance liquid chromatographic method in detail. The results showed that: (1) There is one pheo a molecule which is not associated with the primary photochemistry in the PSⅡ reaction center complex. It may be considered that there are two different electron transfer branches in the PSⅡ reaction center just as in the purple bacterium photosynthetic reaction center. (2) The damaged pheo a may be attributed to the one bonding to the D2 protein comparing the D2 subunit in the PSⅡ reaction center with M subunit in the purple bacterium photosynthetic reaction center. (3) A possible arrangement model of redox cofactors in the PSⅡ reaction center was proposed based on our experiment.展开更多
In the presence of acetone and an excess of exogenous plant pheophytins, bacterio-pheophytins in the reaction centers from Rhodobacter sphaeroides RS601 were replaced by pheophytins at sites HA and HB, when incubated ...In the presence of acetone and an excess of exogenous plant pheophytins, bacterio-pheophytins in the reaction centers from Rhodobacter sphaeroides RS601 were replaced by pheophytins at sites HA and HB, when incubated at 43.5℃ for more than 15 min. The substitution of bacteriopheophytins in the reaction centers was 50% and 71% with incubation of 15 and 60 min, respectively. In the absorption spectra of pheophytin-replaced reaction centers (Phe RCs), bands assigned to the transition moments Qx (537 nm) and QY (758 nm) of bacteriopheophytin disappeared, and three distinct bands assigned to the transition moments Qx (509/542 nm) and QY (674 nm) of pheophytin appeared instead. Compared to that of the control reaction centers, the photochemical activities of Phe RCs are 78% and 71% of control, with the incubation time of 15 and 60 min. Differences might exist between the redox properties of Phe RC and of native reaction centers, but the substitution is significant, and the new system is available for further studies.展开更多
Chlorophylls are important antioxidants found in foods. We explored the mechanisms through which the a and b forms of chlorophyll and of pheophytin (the Mg-chelated form of chlorophyll) reduce oxidation: we used comet...Chlorophylls are important antioxidants found in foods. We explored the mechanisms through which the a and b forms of chlorophyll and of pheophytin (the Mg-chelated form of chlorophyll) reduce oxidation: we used comet assay to measure prevention of H2O2 DNA damage;we tested for quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH);we measured the ability to chelate Fe(II);and, we tested their ability to prevent formation of thiobarbituric acid reactive substances (TBARS) during Cu-mediated peroxidation of low density lipoprotein (LDL) in a chemical assay. All chlorophylls and pheophytins showed significant dose-dependent activity in the assays, with the pheophytins being the strongest antioxidants. Thus, these chemicals can prevent oxidative DNA damage and lipid peroxidation both by reducing reactive oxygen species, such as DPPH, and by chelation of metal ions, such as Fe(II), which can form reactive oxygen species.展开更多
Although it is well known that there are two photosystems catalyzing different photochemical reactions in the chloroplast thylakoid membrane of higher plants, yet the components of these systems are not so clear. In 1...Although it is well known that there are two photosystems catalyzing different photochemical reactions in the chloroplast thylakoid membrane of higher plants, yet the components of these systems are not so clear. In 1977, Klimov, according to the light-dark differential spectrum of photosystem Ⅱ particles and the kinetic behavior of absorption and of fluorescence intensity change at 685 nm, concluded that pheo- phytin (Pheo) was the primary electron acceptor of photosystem Ⅱ. This report attracts much interest of workers to search the evidence of pheophytin as primary elec- tron acceptor in photosynthetic process.展开更多
With the help of pigment substitution, self-assembled monolayer film and square wave voltammetry, the influence of pigment substitution on the electrochemical properties of Rhodobac-ter sphaeroides 601 reaction center...With the help of pigment substitution, self-assembled monolayer film and square wave voltammetry, the influence of pigment substitution on the electrochemical properties of Rhodobac-ter sphaeroides 601 reaction centers was investigated. Results showed that the charge separation could also be driven by externally electric field, similar to the primary photochemical reaction in purple bacterial reaction center. On the surface of Au electrode, a self-assembled monolayer film (the RC-PDDA-DMSA film) was made up of 2,3-dimercaptosuccinic acid (DMSA), poly-dimeth-yldiallylammonium chloride (PDDA) and reaction center (RC). When square wave voltammetry was used to study the RC-PDDA-DMSA film, four redox pairs in the photochemical reaction of RC were observed by changing frequency. With nonlinear fitting, the standard potential of P/P+ and the corresponding electrode reaction rate constant were determined to be 0.522 V and 13.04 S-1, respectively. It was found that the redox peak at -0.02 V changed greatly when bacteriopheophytin was substituted by plant pheophytin in the reaction center. Further studies indicated that this change resulted from the decrease in electron transfer rate between Bphe7Bphe (Phe7Phe) and QA-/QA after pigment substitution. After investigations of spectra and electrochemical properties of different RCs and comparisons of different function groups of pigments, it was indicated that the phytyl tail, similar to other substituted groups of pheophytin, affected the efficiencies of pigment substitution.展开更多
Fluorescence spectra of native purple bacterial reaction center (RC) and bacterial pheophytin (Bphe) replaced RCs were obtained from 600 nm to 900 nm with a selective excitation at 597 nm. With the help of measuring ...Fluorescence spectra of native purple bacterial reaction center (RC) and bacterial pheophytin (Bphe) replaced RCs were obtained from 600 nm to 900 nm with a selective excitation at 597 nm. With the help of measuring the fluorescence from bacterial chlorophyll, bacterial pheophytin and plant pheophytin, the corresponding components in the RCs are classified for fluorescence emission. Results showed that pheophytin substitution influences the composition of fluorescence spectra. Therefore, four, three and two components were obtained from fluorescence spectra of native RC, Bphe B_replaced RC and Bphe A,B _replaced RC, respectively. Fluorescence components are well correlated to the binding of plant pheophytin. The decay of excited state of primary electron donor P in different RCs was also studied by measuring the fluorescence decay at 686.4, 674.1 and 681.1 nm, respectively. The decaying kinetics changed in different RCs, indicating that pheophytin replacement influenced the energy transduction and primary photochemical reaction in purple bacterial reaction centers.展开更多
Photosystem I(PSI)is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin(or cytochrome c6)and the reduction of ferredoxin.This catalytic reaction is realized by a transmembrane el...Photosystem I(PSI)is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin(or cytochrome c6)and the reduction of ferredoxin.This catalytic reaction is realized by a transmembrane electron transfer chain consisting of primary electron donor(a special chlorophyll(Chl)pair)and electron acceptors A_(0),A_(1),and three Fe_(4)S_(4) clusters,F_(X),F_(A),and F_(B).Here we report the PSI structure from a Chl d-dominated cyanobacterium Acaryochloris marina at 3.3Åresolution obtained by single-particle cryo-electron microscopy.The A.marina PSI exists as a trimer with three identical monomers.Surprisingly,the structure reveals a unique composition of electron transfer chain in which the primary electron acceptor A_(0) is composed of two pheophytin a rather than Chl a found in any other well-known PSI structures.A novel subunit Psa27 is observed in the A.marina PSI structure.In addition,77 Chls,13α-carotenes,two phylloquinones,three Fe-S clusters,two phosphatidyl glycerols,and one monogalactosyl-diglyceride were identified in each PSI monomer.Our results provide a structural basis for deciphering the mechanism of photosynthesis in a PSI complex with Chl d as the dominating pigments and absorbing far-red light.展开更多
文摘Photodamage of some pigments in the isolated photosystem Ⅱ (PS Ⅱ) reaction center D1/D2/Cyt b559 complex from spinach has been investigated by means of high performance liquid chromatography. The light induced damage of pheophytin a (pheo a) in the complex was observed for the first time. The content of pheo a decreased about 47% by illumination, suggesting only one of the two pheo a molecules in the PSⅡ reaction center complex was damaged. No damage of β carotene was found.
文摘Photodamage of pheophytin a (pheo a) in the isolated photosystem Ⅱ (PSⅡ) reaction center D1/D2/Cyt b559 complex from spinach has been investigated by high performance liquid chromatographic method in detail. The results showed that: (1) There is one pheo a molecule which is not associated with the primary photochemistry in the PSⅡ reaction center complex. It may be considered that there are two different electron transfer branches in the PSⅡ reaction center just as in the purple bacterium photosynthetic reaction center. (2) The damaged pheo a may be attributed to the one bonding to the D2 protein comparing the D2 subunit in the PSⅡ reaction center with M subunit in the purple bacterium photosynthetic reaction center. (3) A possible arrangement model of redox cofactors in the PSⅡ reaction center was proposed based on our experiment.
文摘In the presence of acetone and an excess of exogenous plant pheophytins, bacterio-pheophytins in the reaction centers from Rhodobacter sphaeroides RS601 were replaced by pheophytins at sites HA and HB, when incubated at 43.5℃ for more than 15 min. The substitution of bacteriopheophytins in the reaction centers was 50% and 71% with incubation of 15 and 60 min, respectively. In the absorption spectra of pheophytin-replaced reaction centers (Phe RCs), bands assigned to the transition moments Qx (537 nm) and QY (758 nm) of bacteriopheophytin disappeared, and three distinct bands assigned to the transition moments Qx (509/542 nm) and QY (674 nm) of pheophytin appeared instead. Compared to that of the control reaction centers, the photochemical activities of Phe RCs are 78% and 71% of control, with the incubation time of 15 and 60 min. Differences might exist between the redox properties of Phe RC and of native reaction centers, but the substitution is significant, and the new system is available for further studies.
文摘Chlorophylls are important antioxidants found in foods. We explored the mechanisms through which the a and b forms of chlorophyll and of pheophytin (the Mg-chelated form of chlorophyll) reduce oxidation: we used comet assay to measure prevention of H2O2 DNA damage;we tested for quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH);we measured the ability to chelate Fe(II);and, we tested their ability to prevent formation of thiobarbituric acid reactive substances (TBARS) during Cu-mediated peroxidation of low density lipoprotein (LDL) in a chemical assay. All chlorophylls and pheophytins showed significant dose-dependent activity in the assays, with the pheophytins being the strongest antioxidants. Thus, these chemicals can prevent oxidative DNA damage and lipid peroxidation both by reducing reactive oxygen species, such as DPPH, and by chelation of metal ions, such as Fe(II), which can form reactive oxygen species.
文摘Although it is well known that there are two photosystems catalyzing different photochemical reactions in the chloroplast thylakoid membrane of higher plants, yet the components of these systems are not so clear. In 1977, Klimov, according to the light-dark differential spectrum of photosystem Ⅱ particles and the kinetic behavior of absorption and of fluorescence intensity change at 685 nm, concluded that pheo- phytin (Pheo) was the primary electron acceptor of photosystem Ⅱ. This report attracts much interest of workers to search the evidence of pheophytin as primary elec- tron acceptor in photosynthetic process.
基金the National Natural Science Foundation of China (Grant No.29872055 for Chen Z. L., Grant Nos. 39970195 and 29905001 for Zhao J. Q. et al., Grant No.39870161 for Zou Y. L. et al.) and the State Key Basic and Development Plan (G1998010100).
文摘With the help of pigment substitution, self-assembled monolayer film and square wave voltammetry, the influence of pigment substitution on the electrochemical properties of Rhodobac-ter sphaeroides 601 reaction centers was investigated. Results showed that the charge separation could also be driven by externally electric field, similar to the primary photochemical reaction in purple bacterial reaction center. On the surface of Au electrode, a self-assembled monolayer film (the RC-PDDA-DMSA film) was made up of 2,3-dimercaptosuccinic acid (DMSA), poly-dimeth-yldiallylammonium chloride (PDDA) and reaction center (RC). When square wave voltammetry was used to study the RC-PDDA-DMSA film, four redox pairs in the photochemical reaction of RC were observed by changing frequency. With nonlinear fitting, the standard potential of P/P+ and the corresponding electrode reaction rate constant were determined to be 0.522 V and 13.04 S-1, respectively. It was found that the redox peak at -0.02 V changed greatly when bacteriopheophytin was substituted by plant pheophytin in the reaction center. Further studies indicated that this change resulted from the decrease in electron transfer rate between Bphe7Bphe (Phe7Phe) and QA-/QA after pigment substitution. After investigations of spectra and electrochemical properties of different RCs and comparisons of different function groups of pigments, it was indicated that the phytyl tail, similar to other substituted groups of pheophytin, affected the efficiencies of pigment substitution.
基金The State Key Basic Research and Development Plan(G1998010100)the National Natural Science Foundation of China(39870161).
文摘Fluorescence spectra of native purple bacterial reaction center (RC) and bacterial pheophytin (Bphe) replaced RCs were obtained from 600 nm to 900 nm with a selective excitation at 597 nm. With the help of measuring the fluorescence from bacterial chlorophyll, bacterial pheophytin and plant pheophytin, the corresponding components in the RCs are classified for fluorescence emission. Results showed that pheophytin substitution influences the composition of fluorescence spectra. Therefore, four, three and two components were obtained from fluorescence spectra of native RC, Bphe B_replaced RC and Bphe A,B _replaced RC, respectively. Fluorescence components are well correlated to the binding of plant pheophytin. The decay of excited state of primary electron donor P in different RCs was also studied by measuring the fluorescence decay at 686.4, 674.1 and 681.1 nm, respectively. The decaying kinetics changed in different RCs, indicating that pheophytin replacement influenced the energy transduction and primary photochemical reaction in purple bacterial reaction centers.
基金The project was funded by the National Key R&D Program of China(2020YFA0907600,2017YFA0503700,2017YFA0504803,2018YFA0507700,2019YFA0906300)the Strategic Priority Research Program of CAS(XDA27050402,XDB17000000)+2 种基金the Chinese Academy of Sciences Key Research Program of Frontier Sciences(QYZDY-SSW-SMC003)Youth Innovation Promotion Association of CAS(2020081),CAS Interdisciplinary Innovation Team(JCTD-2020-06)the Fundamental Research Funds for the Central Universities(2018XZZX001-13).
文摘Photosystem I(PSI)is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin(or cytochrome c6)and the reduction of ferredoxin.This catalytic reaction is realized by a transmembrane electron transfer chain consisting of primary electron donor(a special chlorophyll(Chl)pair)and electron acceptors A_(0),A_(1),and three Fe_(4)S_(4) clusters,F_(X),F_(A),and F_(B).Here we report the PSI structure from a Chl d-dominated cyanobacterium Acaryochloris marina at 3.3Åresolution obtained by single-particle cryo-electron microscopy.The A.marina PSI exists as a trimer with three identical monomers.Surprisingly,the structure reveals a unique composition of electron transfer chain in which the primary electron acceptor A_(0) is composed of two pheophytin a rather than Chl a found in any other well-known PSI structures.A novel subunit Psa27 is observed in the A.marina PSI structure.In addition,77 Chls,13α-carotenes,two phylloquinones,three Fe-S clusters,two phosphatidyl glycerols,and one monogalactosyl-diglyceride were identified in each PSI monomer.Our results provide a structural basis for deciphering the mechanism of photosynthesis in a PSI complex with Chl d as the dominating pigments and absorbing far-red light.