AIM:To develop an affinity peptide that binds to gastric cancer used for the detection of early gastric cancer.METHODS:A peptide screen was performed by biopanning the PhD-12 phage display library,clearing non-specifi...AIM:To develop an affinity peptide that binds to gastric cancer used for the detection of early gastric cancer.METHODS:A peptide screen was performed by biopanning the PhD-12 phage display library,clearing non-specific binders against tumor-adjacent normal appearing gastric mucosa and obtaining selective binding against freshly harvested gastric cancer tissues.Tumortargeted binding of selected peptides was confirmed by bound phage counts,enzyme-linked immunosorbent assay,competitive inhibition,fluorescence microscopy and semi-quantitative analysis on immunohistochemistry using different types of cancer tissues.RESULTS:Approximately 92.8% of the non-specific phage clones were subtracted from the original phage library after two rounds of biopanning against normal-appearing gastric mucosa.After the third round of positive screening,the peptide sequence AADNAKTKSFPV(AAD) appeared in 25%(12/48) of the analyzed phages.For the control peptide,these values were 6.8 ± 2.3,5.1 ± 1.7,3.5 ± 2.1,4.6 ± 1.9 and 1.1 ± 0.5,respectively.The values for AAD peptide were statistically signif icant(P < 0.01) for gastric cancer as compared with other histological classif ications and control peptide.CONCLUSION:A novel peptide is discovered to have a specific binding activity to gastric cancer,and can be used to distinguish neoplastic from normal gastric mucosa,demonstrating the potential for early cancer detection on endoscopy.展开更多
Hepatitis B virus(HBV) infection is a major global health challenge leading to serious disorders such as cirrhosis and hepatocellular carcinoma. Currently, there exist various diagnostic and therapeutic approaches for...Hepatitis B virus(HBV) infection is a major global health challenge leading to serious disorders such as cirrhosis and hepatocellular carcinoma. Currently, there exist various diagnostic and therapeutic approaches for HBV infection. However, prevalence and hazardous effects of chronic viral infection heighten the need to develop novel methodologies for the detection and treatment of this infection. Bacteriophages, viruses that specifically infect bacterial cells, with a long-established tradition in molecular biology and biotechnology have recently been introduced as novel tools for the prevention, diagnosis and treatment of HBV infection. Bacteriophages, due to tremendous genetic flexibility, represent potential to undergo a huge variety of surface modifications. This property has been the rationale behind introduction of phage display concept. This powerful approach, together with combinatorial chemistry, has shaped the concept of phage display libraries with diverse applications for the detection and therapy of HBV infection. This review aims to offer an insightful overview of the potential of bacteriophages in the development of helpful prophylactic(vaccine design), diagnostic and therapeutic strategies for HBV infection thereby providing new perspec-tives to the growing field of bacteriophage researches directing towards HBV infection.展开更多
The approval of using monoclonal antibodies as a targeted therapy in the management of patients with B cell lymphoma has led to new treatment options for this group of patients. Production ofmonoclonal antibodies by t...The approval of using monoclonal antibodies as a targeted therapy in the management of patients with B cell lymphoma has led to new treatment options for this group of patients. Production ofmonoclonal antibodies by the traditional hybridoma technology is costly, and the resulting murine antibodies often have the disadvantage of triggering human anti-mouse antibody (HAMA) response. Therefore recombinant Fab antibodies generated by the phage display technology can be a suitable alternative in managing B cell lymphoma. In this study, we extracted total RNA from spleen cells of BALB/c mice immunized with human B lymphoma cells, and used RT-PCR to amplify cDNAs coding for the κ light chains and Fd fragments of heavy chains. After appropriate restriction digests, these cDNA fragments were successively inserted into the phagemid vector pComb3H-SS to construct an immunized Fab phage display library. The diversity of the constructed library was approximately 1.94× 10^7. Following five rounds of biopanning, soluble Fab antibodies were produced from positive clones identified by ELISA. From eight positive clones, FabC06, FabC21, FabC43 and FabC59 were selected for sequence analysis. At the level of amino acid sequences, the variable heavy domains (VH) and variable light domains (VL) were found to share 88-92% and 89-94% homology with sequences coded by the corresponding murine germline genes respectively. Furthermore, reactivity with membrane proteins of the B cell lymphoma was demonstrated by immunohistochemistry and western blotting. These immunized Fab antibodies may provide a valuable tool for further study of B cell lymphoma and could also contribute to the improvement of disease therapy.展开更多
基金Supported by The National Natural Science Foundation of China,No.81172359
文摘AIM:To develop an affinity peptide that binds to gastric cancer used for the detection of early gastric cancer.METHODS:A peptide screen was performed by biopanning the PhD-12 phage display library,clearing non-specific binders against tumor-adjacent normal appearing gastric mucosa and obtaining selective binding against freshly harvested gastric cancer tissues.Tumortargeted binding of selected peptides was confirmed by bound phage counts,enzyme-linked immunosorbent assay,competitive inhibition,fluorescence microscopy and semi-quantitative analysis on immunohistochemistry using different types of cancer tissues.RESULTS:Approximately 92.8% of the non-specific phage clones were subtracted from the original phage library after two rounds of biopanning against normal-appearing gastric mucosa.After the third round of positive screening,the peptide sequence AADNAKTKSFPV(AAD) appeared in 25%(12/48) of the analyzed phages.For the control peptide,these values were 6.8 ± 2.3,5.1 ± 1.7,3.5 ± 2.1,4.6 ± 1.9 and 1.1 ± 0.5,respectively.The values for AAD peptide were statistically signif icant(P < 0.01) for gastric cancer as compared with other histological classif ications and control peptide.CONCLUSION:A novel peptide is discovered to have a specific binding activity to gastric cancer,and can be used to distinguish neoplastic from normal gastric mucosa,demonstrating the potential for early cancer detection on endoscopy.
文摘Hepatitis B virus(HBV) infection is a major global health challenge leading to serious disorders such as cirrhosis and hepatocellular carcinoma. Currently, there exist various diagnostic and therapeutic approaches for HBV infection. However, prevalence and hazardous effects of chronic viral infection heighten the need to develop novel methodologies for the detection and treatment of this infection. Bacteriophages, viruses that specifically infect bacterial cells, with a long-established tradition in molecular biology and biotechnology have recently been introduced as novel tools for the prevention, diagnosis and treatment of HBV infection. Bacteriophages, due to tremendous genetic flexibility, represent potential to undergo a huge variety of surface modifications. This property has been the rationale behind introduction of phage display concept. This powerful approach, together with combinatorial chemistry, has shaped the concept of phage display libraries with diverse applications for the detection and therapy of HBV infection. This review aims to offer an insightful overview of the potential of bacteriophages in the development of helpful prophylactic(vaccine design), diagnostic and therapeutic strategies for HBV infection thereby providing new perspec-tives to the growing field of bacteriophage researches directing towards HBV infection.
基金This work was supported by grants from the National Natural Science Foundation of China(No.30400111)the Natural Science Foundation of Jiangsu Province(No.BK2004041).
文摘The approval of using monoclonal antibodies as a targeted therapy in the management of patients with B cell lymphoma has led to new treatment options for this group of patients. Production ofmonoclonal antibodies by the traditional hybridoma technology is costly, and the resulting murine antibodies often have the disadvantage of triggering human anti-mouse antibody (HAMA) response. Therefore recombinant Fab antibodies generated by the phage display technology can be a suitable alternative in managing B cell lymphoma. In this study, we extracted total RNA from spleen cells of BALB/c mice immunized with human B lymphoma cells, and used RT-PCR to amplify cDNAs coding for the κ light chains and Fd fragments of heavy chains. After appropriate restriction digests, these cDNA fragments were successively inserted into the phagemid vector pComb3H-SS to construct an immunized Fab phage display library. The diversity of the constructed library was approximately 1.94× 10^7. Following five rounds of biopanning, soluble Fab antibodies were produced from positive clones identified by ELISA. From eight positive clones, FabC06, FabC21, FabC43 and FabC59 were selected for sequence analysis. At the level of amino acid sequences, the variable heavy domains (VH) and variable light domains (VL) were found to share 88-92% and 89-94% homology with sequences coded by the corresponding murine germline genes respectively. Furthermore, reactivity with membrane proteins of the B cell lymphoma was demonstrated by immunohistochemistry and western blotting. These immunized Fab antibodies may provide a valuable tool for further study of B cell lymphoma and could also contribute to the improvement of disease therapy.