期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Petawatt and exawatt class lasers worldwide 被引量:48
1
作者 Colin N.Danson Constantin Haefner +30 位作者 Jake Bromage Thomas Butcher Jean-Christophe FChanteloup Enam A.Chowdhury Almantas Galvanauskas Leonida A.Gizzi Joachim Hein David I.Hillier Nicholas W.Hopps Yoshiaki Kato Efim A.Khazanov Ryosuke Kodama Georg Korn Ruxin Li Yutong Li Jens Limpert Jingui Ma Chang Hee Nam David Neely Dimitrios Papadopoulos Rory R.Penman Liejia Qian Jorge J.Rocca andrey A.Shaykin Craig W.Siders Christopher Spindloe Sándor Szatmári Raoul M.G.M.Trines Jianqiang Zhu Ping Zhu Jonathan D.Zuegel 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2019年第3期168-221,共54页
In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some ... In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development. 展开更多
关键词 exawatt lasers HIGH-POWER lasers petawatt lasers ultra-high INTENSITY
原文传递
Petawatt class lasers worldwide 被引量:25
2
作者 Colin Danson David Hillier +1 位作者 Nicholas Hopps David Neely 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2015年第1期5-18,共14页
The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for sp... The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for specific research activities,including particle acceleration, inertial confinement fusion and radiation therapy, and for secondary source generation(x-rays, electrons, protons, neutrons and ions). They are also now routinely coupled, and synchronized, to other large scale facilities including megajoule scale lasers, ion and electron accelerators, x-ray sources and z-pinches. The authors of this paper have tried to compile a comprehensive overview of the current status of petawatt class lasers worldwide.The definition of ‘petawatt class' in this context is a laser that delivers >200 TW. 展开更多
关键词 DIODE PUMPED HIGH intensity HIGH power lasers megajoule petawatt lasers
原文传递
Recent laser upgrades at Sandia's Z-backlighter facility in order to accommodate new requirements for magnetized liner inertial fusion on the Z-machine
3
作者 Jens Schwarz Patrick Rambo +6 位作者 Darrell Armstrong Marius Schollmeier Ian Smith Jonathan Shores Matthias Geissel Mark Kimmel John Porter 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2016年第4期1-12,共12页
The Z-backlighter laser facility primarily consists of two high energy, high-power laser systems. Z-Beamlet laser(ZBL)(Rambo et al., Appl. Opt. 44, 2421(2005)) is a multi-kJ-class, nanosecond laser operating at 1054 n... The Z-backlighter laser facility primarily consists of two high energy, high-power laser systems. Z-Beamlet laser(ZBL)(Rambo et al., Appl. Opt. 44, 2421(2005)) is a multi-kJ-class, nanosecond laser operating at 1054 nm which is frequency doubled to 527 nm in order to provide x-ray backlighting of high energy density events on the Z-machine. Z-Petawatt(ZPW)(Schwarz et al., J. Phys.: Conf. Ser. 112, 032020(2008)) is a petawatt-class system operating at 1054 nm delivering up to 500 J in 500 fs for backlighting and various short-pulse laser experiments(see also Figure 10 for a facility overview). With the development of the magnetized liner inertial fusion(MagLIF) concept on the Z-machine, the primary backlighting missions of ZBL and ZPW have been adjusted accordingly. As a result, we have focused our recent efforts on increasing the output energy of ZBL from 2 to 4 kJ at 527 nm by modifying the fiber front end to now include extra bandwidth(for stimulated Brillouin scattering suppression). The MagLIF concept requires a well-defined/behaved beam for interaction with the pressurized fuel. Hence we have made great efforts to implement an adaptive optics system on ZBL and have explored the use of phase plates. We are also exploring concepts to use ZPW as a backlighter for ZBL driven MagLIF experiments. Alternatively, ZPW could be used as an additional fusion fuel pre-heater or as a temporally flexible high energy pre-pulse. All of these concepts require the ability to operate the ZPW in a nanosecond long-pulse mode, in which the beam can co-propagate with ZBL. Some of the proposed modifications are complete and most of them are well on their way. 展开更多
关键词 adaptive optics high energy lasers MagLIF OPCPA petawatt lasers SBS suppression
原文传递
Use of KDP crystal as a Kerr nonlinear medium for compressing PW laser pulses down to 10 fs
4
作者 Andrey Shaykin Vladislav Ginzburg +8 位作者 Ivan Yakovlev Anton Kochetkov Alexey Kuzmin Sergey Mironov Ilya Shaikin Sergey Stukachev Vladimir Lozhkarev Artem Prokhorov Efim Khazanov 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2021年第4期86-92,共7页
The input pulse of the laser PEARL with energy of 18 J and pulse duration of about 60 fs was compressed to 10 fs after passage through a 4-mm-thick KDP crystal and reflection at two chirped mirrors with sum dispersion... The input pulse of the laser PEARL with energy of 18 J and pulse duration of about 60 fs was compressed to 10 fs after passage through a 4-mm-thick KDP crystal and reflection at two chirped mirrors with sum dispersion of-200 fs^(2).The experiments were performed for the B-integral values from 5 to 19 without visible damage to the optical elements,which indicates that small-scale self-focusing is not a significant issue.It was shown that,by virtue of the low dispersion of the group velocity,the KDP crystal has some advantages over silica:a larger pulse compression coefficient,especially at a small value of the B-integral(B=5,...,9),lower absolute values of chirped mirror dispersion,and also a possibility to control the magnitude of nonlinearity and dispersion by changing crystal orientation. 展开更多
关键词 CafCA petawatt lasers post-compression self-phase modulation small-scale self-focusing thin film compression third-order nonlinearity
原文传递
Systematic study of spatiotemporal influences on temporal contrast in the focal region in large-aperture broadband ultrashort petawatt lasers 被引量:3
5
作者 Ping Zhu Xinglong Xie +10 位作者 Jun Kang Qingwei Yang Haidong Zhu Ailin Guo Meizhi Sun Qi Gao Ziruo Cui Xiao Liang Shunhua Yang Dongjun Zhang Jianqiang Zhu 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2018年第1期44-50,共7页
Temporal contrast is one of the crucial physical determinants which guarantee the successful performance of laser–matter interaction experiments. We generally reviewed the influences on the temporal contrast in three... Temporal contrast is one of the crucial physical determinants which guarantee the successful performance of laser–matter interaction experiments. We generally reviewed the influences on the temporal contrast in three categories of noises based on the requirement by the physical mechanisms. The spatiotemporal influences on temporal contrast at the focal region of the chromatic aberration and propagation time difference introduced by large-aperture broadband spatial filters, which were spatiotemporally coupled with compression and focusing, were calculated and discussed with a practical case in SG-Ⅱ5 PW ultrashort petawatt laser. The system-wide spatiotemporal coupling existing in large-aperture broadband ultrashort petawatt lasers was proved to be one of the possible causes of temporal contrast degradation in the focal region. 展开更多
关键词 chromatic aberration spatiotemporal coupling temporal contrast ultrashort petawatt lasers
原文传递
Target alignment in the Shen-Guang Ⅱ Upgrade laser facility 被引量:2
6
作者 Lei Ren Ping Shao +16 位作者 Dongfeng Zhao Yang Zhou Zhijian Cai Neng Hua Zhaoyang Jiao Lan Xia Zhanfeng Qiao Rong Wu Lailin Ji Dong Liu Lingjie Ju Wei Pan Qiang Li Qiang Ye Mingying Sun Jianqiang Zhu Zunqi Lin 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2018年第1期58-66,共9页
The Shen-Guang II Upgrade(SG-Ⅱ-U) laser facility consists of eight high-power nanosecond laser beams and one shortpulse picosecond petawatt laser. It is designed for the study of inertial confinement fusion(ICF), esp... The Shen-Guang II Upgrade(SG-Ⅱ-U) laser facility consists of eight high-power nanosecond laser beams and one shortpulse picosecond petawatt laser. It is designed for the study of inertial confinement fusion(ICF), especially for conducting fast ignition(FI) research in China and other basic science experiments. To perform FI successfully with hohlraum targets containing a golden cone, the long-pulse beam and cylindrical hohlraum as well as the short-pulse beam and cone target alignment must satisfy tight specifications(30 and 20 μm rms for each case). To explore new ICF ignition targets with six laser entrance holes(LEHs), a rotation sensor was adapted to meet the requirements of a three-dimensional target and correct beam alignment. In this paper, the strategy for aligning the nanosecond beam based on target alignment sensor(TAS) is introduced and improved to meet requirements of the picosecond lasers and the new six LEHs hohlraum targets in the SG-II-U facility. The expected performance of the alignment system is presented, and the alignment error is also discussed. 展开更多
关键词 laser drivers petawatt lasers spherical hohlraum target alignment target area
原文传递
Scaling and design of high-energy laser plasma electron acceleration 被引量:1
7
作者 Kazuhisa Nakajima Hyung Taek Kim +1 位作者 Tae Moon Jeong Chang Hee Nam 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2015年第1期81-91,共11页
Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the lase... Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the laser wakefield acceleration mechanism. While, to date, worldwide research on laser plasma accelerators has been focused on the creation of compact particle and radiation sources for basic sciences, medical and industrial applications, there is great interest in applications for high-energy physics and astrophysics, exploring unprecedented high-energy frontier phenomena. In this context, we present an overview of experimental achievements in laser plasma acceleration from the perspective of the production of GeV-level electron beams, and deduce the scaling formulas capable of predicting experimental results self-consistently, taking into account the propagation of a relativistic laser pulse through plasma and the accelerating field reduction due to beam loading. Finally, we present design examples for 10-GeV-level laser plasma acceleration, which is expected in near-term experiments by means of petawatt-class lasers. 展开更多
关键词 ELECTRON BEAM loading GeV-level ELECTRON BEAM acceleration LASER plasma(wakefield) accelerators petawatt-class lasers propagation of relativistic LASER pulses in PLASMA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部