期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合用户属性交互的个性化评论摘要生成
1
作者 陶嘉鸿 卢永美 +3 位作者 何东 卜令梅 陈黎 于中华 《小型微型计算机系统》 CSCD 北大核心 2023年第8期1649-1655,共7页
个性化评论摘要旨在针对一篇评论文本,面向不同用户产生反映他们不同偏好的摘要,具有较高的应用价值.现有工作存在新用户偏好无法增量学习、忽略用户属性关联对偏好的影响等不足.为了解决上述问题,本文提出了融合用户属性交互的个性化... 个性化评论摘要旨在针对一篇评论文本,面向不同用户产生反映他们不同偏好的摘要,具有较高的应用价值.现有工作存在新用户偏好无法增量学习、忽略用户属性关联对偏好的影响等不足.为了解决上述问题,本文提出了融合用户属性交互的个性化评论摘要生成算法.该算法自动学习用户各方面属性的嵌入表达,在此基础上利用自注意力机制捕捉所有属性之间的交互关联,从而使获得的用户偏好表达更加准确.得到的偏好表达被用于捕捉评论中用户可能感兴趣的信息,进而指导模型生成符合用户个性化偏好的摘要文本.实验结果表明,本文提出的算法在评价指标ROUGE上明显高于已有的先进算法. 展开更多
关键词 评论摘要 用户属性交互 个性化摘要生成 自注意力机制
下载PDF
Personal summarization from profile networks
2
作者 Zhongqing WANG Shoushan LI Guodong ZHOU 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第6期1085-1097,共13页
Personal profile information on social media like LinkedIn.com and Facebook.com is at the core of many inter- esting applications, such as talent recommendation and con- textual advertising. However, personal profiles... Personal profile information on social media like LinkedIn.com and Facebook.com is at the core of many inter- esting applications, such as talent recommendation and con- textual advertising. However, personal profiles usually lack consistent organization confronted with the large amount of available information. Therefore, it is always a challenge for people to quickly find desired information from them. In this paper, we address the task of personal profile summarization by leveraging both textual information and social connection information in social networks from both unsupervised and supervised learning paradigms. Here, using social connec- tion information is motivated by the intuition that people with similar academic, business or social background (e.g., co- major, co-university, and co-corporation) tend to have similar experiences and should have similar summaries. For unsu- pervised learning, we propose a collective ranking approach, called SocialRank, to combine textual information in an in- dividual profile and social context information from relevant profiles in generating a personal profile summary. For super- vised learning, we propose a collective factor graph model, called CoFG, to summarize personal profiles with local tex- tual attribute functions and social connection factors. Exten- sive evaluation on a large dataset from LinkedIn.com demon- strates the usefulness of social connection information in per- sonal profile summarization and the effectiveness of our pro- posed unsupervised and supervised learning approaches. 展开更多
关键词 natural language processing machine learning social networks personal profile summarization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部