Personality recognition plays a pivotal role when developing user-centric solutions such as recommender systems or decision support systems across various domains,including education,e-commerce,or human resources.Tra-...Personality recognition plays a pivotal role when developing user-centric solutions such as recommender systems or decision support systems across various domains,including education,e-commerce,or human resources.Tra-ditional machine learning techniques have been broadly employed for personality trait identification;nevertheless,the development of new technologies based on deep learning has led to new opportunities to improve their performance.This study focuses on the capabilities of pre-trained language models such as BERT,RoBERTa,ALBERT,ELECTRA,ERNIE,or XLNet,to deal with the task of personality recognition.These models are able to capture structural features from textual content and comprehend a multitude of language facets and complex features such as hierarchical relationships or long-term dependencies.This makes them suitable to classify multi-label personality traits from reviews while mitigating computational costs.The focus of this approach centers on developing an architecture based on different layers able to capture the semantic context and structural features from texts.Moreover,it is able to fine-tune the previous models using the MyPersonality dataset,which comprises 9,917 status updates contributed by 250 Facebook users.These status updates are categorized according to the well-known Big Five personality model,setting the stage for a comprehensive exploration of personality traits.To test the proposal,a set of experiments have been performed using different metrics such as the exact match ratio,hamming loss,zero-one-loss,precision,recall,F1-score,and weighted averages.The results reveal ERNIE is the top-performing model,achieving an exact match ratio of 72.32%,an accuracy rate of 87.17%,and 84.41%of F1-score.The findings demonstrate that the tested models substantially outperform other state-of-the-art studies,enhancing the accuracy by at least 3%and confirming them as powerful tools for personality recognition.These findings represent substantial advancements in personality recognition,making th展开更多
Detection of personality using emotions is a research domain in artificial intelligence.At present,some agents can keep the human’s profile for interaction and adapts themselves according to their preferences.However...Detection of personality using emotions is a research domain in artificial intelligence.At present,some agents can keep the human’s profile for interaction and adapts themselves according to their preferences.However,the effective method for interaction is to detect the person’s personality by understanding the emotions and context of the subject.The idea behind adding personality in cognitive agents begins an attempt to maximize adaptability on the basis of behavior.In our daily life,humans socially interact with each other by analyzing the emotions and context of interaction from audio or visual input.This paper presents a conceptual personality model in cognitive agents that can determine personality and behavior based on some text input,using the context subjectivity of the given data and emotions obtained from a particular situation/context.The proposed work consists of Jumbo Chatbot,which can chat with humans.In this social interaction,the chatbot predicts human personality by understanding the emotions and context of interactive humans.Currently,the Jumbo chatbot is using the BFI technique to interact with a human.The accuracy of proposed work varies and improve through getting more experiences of interaction.展开更多
Auditing standards require external auditors to provide reasonable assurance that the financial statements are free from material misstatements, either due to fraud or error. Inability of the external auditors to dete...Auditing standards require external auditors to provide reasonable assurance that the financial statements are free from material misstatements, either due to fraud or error. Inability of the external auditors to detect the material misstatements, particularly fraud, may expose them to litigation. The present study aims to examine the effect of personality factors (i.e., neuroticism, extraversion, conscientiousness, openness to experience and agreeableness) on the external auditors' ability to detect the likelihood of fraud. An experimental approach is adopted by sending case materials to audit partners and audit managers attached to auditing firms operating in Malaysia. The result shows that personality does not have a positive effect on the external auditors' ability to detect the likelihood of fraud.展开更多
基金This work has been partially supported by FEDER and the State Research Agency(AEI)of the Spanish Ministry of Economy and Competition under Grant SAFER:PID2019-104735RB-C42(AEI/FEDER,UE)the General Subdirection for Gambling Regulation of the Spanish ConsumptionMinistry under the Grant Detec-EMO:SUBV23/00010the Project PLEC2021-007681 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR.
文摘Personality recognition plays a pivotal role when developing user-centric solutions such as recommender systems or decision support systems across various domains,including education,e-commerce,or human resources.Tra-ditional machine learning techniques have been broadly employed for personality trait identification;nevertheless,the development of new technologies based on deep learning has led to new opportunities to improve their performance.This study focuses on the capabilities of pre-trained language models such as BERT,RoBERTa,ALBERT,ELECTRA,ERNIE,or XLNet,to deal with the task of personality recognition.These models are able to capture structural features from textual content and comprehend a multitude of language facets and complex features such as hierarchical relationships or long-term dependencies.This makes them suitable to classify multi-label personality traits from reviews while mitigating computational costs.The focus of this approach centers on developing an architecture based on different layers able to capture the semantic context and structural features from texts.Moreover,it is able to fine-tune the previous models using the MyPersonality dataset,which comprises 9,917 status updates contributed by 250 Facebook users.These status updates are categorized according to the well-known Big Five personality model,setting the stage for a comprehensive exploration of personality traits.To test the proposal,a set of experiments have been performed using different metrics such as the exact match ratio,hamming loss,zero-one-loss,precision,recall,F1-score,and weighted averages.The results reveal ERNIE is the top-performing model,achieving an exact match ratio of 72.32%,an accuracy rate of 87.17%,and 84.41%of F1-score.The findings demonstrate that the tested models substantially outperform other state-of-the-art studies,enhancing the accuracy by at least 3%and confirming them as powerful tools for personality recognition.These findings represent substantial advancements in personality recognition,making th
文摘Detection of personality using emotions is a research domain in artificial intelligence.At present,some agents can keep the human’s profile for interaction and adapts themselves according to their preferences.However,the effective method for interaction is to detect the person’s personality by understanding the emotions and context of the subject.The idea behind adding personality in cognitive agents begins an attempt to maximize adaptability on the basis of behavior.In our daily life,humans socially interact with each other by analyzing the emotions and context of interaction from audio or visual input.This paper presents a conceptual personality model in cognitive agents that can determine personality and behavior based on some text input,using the context subjectivity of the given data and emotions obtained from a particular situation/context.The proposed work consists of Jumbo Chatbot,which can chat with humans.In this social interaction,the chatbot predicts human personality by understanding the emotions and context of interactive humans.Currently,the Jumbo chatbot is using the BFI technique to interact with a human.The accuracy of proposed work varies and improve through getting more experiences of interaction.
文摘Auditing standards require external auditors to provide reasonable assurance that the financial statements are free from material misstatements, either due to fraud or error. Inability of the external auditors to detect the material misstatements, particularly fraud, may expose them to litigation. The present study aims to examine the effect of personality factors (i.e., neuroticism, extraversion, conscientiousness, openness to experience and agreeableness) on the external auditors' ability to detect the likelihood of fraud. An experimental approach is adopted by sending case materials to audit partners and audit managers attached to auditing firms operating in Malaysia. The result shows that personality does not have a positive effect on the external auditors' ability to detect the likelihood of fraud.