Computational calculations using density functional theory(DFT) were performed for the first time using the full potential linearized augmented plane wave plus local orbital method(FP-LAPW + LO) to determine the struc...Computational calculations using density functional theory(DFT) were performed for the first time using the full potential linearized augmented plane wave plus local orbital method(FP-LAPW + LO) to determine the structural, elastic, electronic and magnetic properties of europium-based cubic perovskites EuYO_(3)(Y=Cr, Mn, Fe). The exchange correlation potentials of GGA along with some analytical methods were adopted for the computation of structural and elastic properties. Moreover, the GGA + U formalism was also added for obtaining more precise electronic and magnetic properties, particularly to address the Eu-4f and Y-3d orientations in the spin-polarized double cell symmetry. The observed lattice parameters of these compounds are consistent with experiment. The observed bulk moduli predict that EuCrO_(3) is harder and less compressible than EuMnO_(3) and EuFeO_(3). The calculated tolerance factors of these compounds are within the cubic symmetry range. Our computed critical radius of EuCrO_(3) shows that EuCrO_(3) has a larger migration energy. Based on their elastic properties, these compounds are ductile in nature. We also computed the thermal properties of these compounds. The band structures and density of states show that these compounds are metallic in character. The lowest ground state energy and magnetic moments of these compounds expose their ferromagnetic nature. The metallic nature and strong ferromagnetism of these compounds make them promising applicants for application in spintronic.展开更多
Organic–inorganic lead halide perovskites(LHPs) have attracted great interest owing to their outstanding optoelectronic properties.Typically,the underlying electronic structure would determinate the physical properti...Organic–inorganic lead halide perovskites(LHPs) have attracted great interest owing to their outstanding optoelectronic properties.Typically,the underlying electronic structure would determinate the physical properties of materials.But as for now,limited studies have been done to reveal the underlying electronic structure of this material system,comparing to the huge amount of investigations on the material synthesis.The effective mass of the valance band is one of the most important physical parameters which plays a dominant role in charge transport and photovoltaic phenomena.In pristine CsPbBr_(3),the Fr?hlich polarons associated with the Pb–Br stretching modes are proposed to be responsible for the effective mass renormalization.In this regard,it would be very interesting to explore the electronic structure in doped LHPs.Here,we report high-resolution angle-resolved photoemission spectroscopy(ARPES) studies on both pristine and Cl-doped CsPbBr_(3).The experimental band dispersions are extracted from ARPES spectra along both ■ and ■ high symmetry directions.DFT calculations are performed and directly compared with the ARPES data.Our results have revealed the band structure of Cl-doped CsPbBr_(3) for the first time,which have also unveiled the effective mass renormalization in the Cl-doped CsPbBr_(3) compound.Doping dependent measurements indicate that the chlorine doping could moderately tune the renormalization strength.These results will help understand the physical properties of LHPs as a function of doping.展开更多
Anti-perovskites A3SnO(A=Ca,Sr,and Ba)are an important class of materials due to the emergence of Dirac cones and tiny mass gaps in their band structures originating from an intricate interplay of crystal symmetry,spi...Anti-perovskites A3SnO(A=Ca,Sr,and Ba)are an important class of materials due to the emergence of Dirac cones and tiny mass gaps in their band structures originating from an intricate interplay of crystal symmetry,spin–orbit coupling,and band overlap.This provides an exciting playground for modulating their electronic properties in the two-dimensional(2D)limit.Herein,we employ first-principles density functional theory(DFT)calculations by combining dispersion-corrected SCAN+rVV10 and mBJ functionals for a comprehensive side-by-side comparison of the structural,thermodynamic,dynamical,mechanical,electronic,and thermoelectric properties of bulk and monolayer(one unit cell thick)A3SnO anti-perovskites.Our results show that 2D monolayers derived from bulk A3SnO anti-perovskites are structurally and energetically stable.Moreover,Rashba-type splitting in the electronic structure of Ca3SnO and Sr3SnO monolayers is observed owing to strong spin–orbit coupling and inversion asymmetry.On the other hand,monolayer Ba3SnO exhibits Dirac cone at the high-symmetryΓpoint due to the domination of band overlap.Based on the predicted electronic transport properties,it is shown that inversion asymmetry plays an essential character such that the monolayers Ca3SnO and Sr3SnO outperform thermoelectric performance of their bulk counterparts.展开更多
Pr(Ga1-xCox)0.9Mg0.1O3-δ (x=0, 0.1, 0.2, 0.3) was synthesized using solid-state reaction technique to study the effects of Co doping on their structure and properties. Room and high temperature XRD, DSC and elect...Pr(Ga1-xCox)0.9Mg0.1O3-δ (x=0, 0.1, 0.2, 0.3) was synthesized using solid-state reaction technique to study the effects of Co doping on their structure and properties. Room and high temperature XRD, DSC and electrical conductivity measurement with D.C. four-probe technique were adopted in the study. The results indicated its orthorhombic-distorted perovskite structure at room temperature. PrGa0.9Mg0.1O3-δ maintained its orthorhombic-distorted structure between 298 and 1173 K. For Pr(Ga0.7Co0.3)0.9Mg0.1O3-δ, such structure existed below 873 K. From 873 to 1173 K, it possessed tetragonal structure. The transformation from orthorhombic to tetragonal structure at 873 K was of second order. The intrinsic volume thermal expansion of tetragonal structured Pr(Ga0.7Co0.3)0.9Mg0.1O3-δ Was about 50% higher than those of PrGa0.9Mg0.1O3-δ. The electrical conductivity increased with Co content. The activation energies of conduction for Pr(Ga1-xCox)0.9Mg0.1O3-δ are in range from 0.197 to 0.246 eV, much lower than 1.543 eV for PrGaO3.展开更多
Metal halide perovskites possess appealing optoelectronic properties and have been widely applied for solar energy harvesting and light emitting.Although perovskite solar cells(PeSCs)and perovskite light-emitting diod...Metal halide perovskites possess appealing optoelectronic properties and have been widely applied for solar energy harvesting and light emitting.Although perovskite solar cells(PeSCs)and perovskite light-emitting diodes(PeLEDs)have been developed rapidly in recent years,there are still no universal rules for the selection of perovskites to achieve high-performance optoelectronic devices.In this review,the working mechanisms of PeSCs and PeLEDs are first demonstrated with the discussion on the factors which determine the device performance.We then examine the optoelectronic properties of perovskites with structures modulated from 3D,2D,1D to 0D,and analyze the corresponding structure-property relationships in terms of photo-electric and electric-photo conversion processes.Based on the unique optoelectronic properties of structurally modulated perovskites,we put forward the concept of structural assembling engineering that integrate the merits of different types of perovskites within one matrix and elaborate their excellent properties for applications of both PeSCs and PeLEDs.Finally,we discuss the potential challenges and provide our perspectives on the structural assembling engineering of perovskites for future optoelectronic applications.展开更多
The resistive switching(RS)mechanism of hybrid organic–inorganic perovskites has not been clearly understood until now.A switchable diode-like RS behavior in MAPbBr3 single crystals using Au(or Pt)symmetric electrode...The resistive switching(RS)mechanism of hybrid organic–inorganic perovskites has not been clearly understood until now.A switchable diode-like RS behavior in MAPbBr3 single crystals using Au(or Pt)symmetric electrodes is reported.Both the high resistance state(HRS)and low resistance state(LRS)are electrode-area dependent and light responsive.We propose an electric-fielddriven inner p–n junction accompanied by a trap-controlled space-charge-limited conduction(SCLC)conduction mechanism to explain this switchable diode-like RS behavior in MAPbBr_(3) single crystals.展开更多
基金Project supported by the Higher Education of Pakistan Under National Research Grant Program(NRPU)(Grant No:14408/NRPU/R&D/HEC/20212021)。
文摘Computational calculations using density functional theory(DFT) were performed for the first time using the full potential linearized augmented plane wave plus local orbital method(FP-LAPW + LO) to determine the structural, elastic, electronic and magnetic properties of europium-based cubic perovskites EuYO_(3)(Y=Cr, Mn, Fe). The exchange correlation potentials of GGA along with some analytical methods were adopted for the computation of structural and elastic properties. Moreover, the GGA + U formalism was also added for obtaining more precise electronic and magnetic properties, particularly to address the Eu-4f and Y-3d orientations in the spin-polarized double cell symmetry. The observed lattice parameters of these compounds are consistent with experiment. The observed bulk moduli predict that EuCrO_(3) is harder and less compressible than EuMnO_(3) and EuFeO_(3). The calculated tolerance factors of these compounds are within the cubic symmetry range. Our computed critical radius of EuCrO_(3) shows that EuCrO_(3) has a larger migration energy. Based on their elastic properties, these compounds are ductile in nature. We also computed the thermal properties of these compounds. The band structures and density of states show that these compounds are metallic in character. The lowest ground state energy and magnetic moments of these compounds expose their ferromagnetic nature. The metallic nature and strong ferromagnetism of these compounds make them promising applicants for application in spintronic.
基金Project supported by the International Partnership Program of the Chinese Academy of Sciences(Grant No.123GJHZ2022035MI)the Fundamental Research Funds for the Central Universities(Grant Nos.WK3510000015 and WK3510000012)。
文摘Organic–inorganic lead halide perovskites(LHPs) have attracted great interest owing to their outstanding optoelectronic properties.Typically,the underlying electronic structure would determinate the physical properties of materials.But as for now,limited studies have been done to reveal the underlying electronic structure of this material system,comparing to the huge amount of investigations on the material synthesis.The effective mass of the valance band is one of the most important physical parameters which plays a dominant role in charge transport and photovoltaic phenomena.In pristine CsPbBr_(3),the Fr?hlich polarons associated with the Pb–Br stretching modes are proposed to be responsible for the effective mass renormalization.In this regard,it would be very interesting to explore the electronic structure in doped LHPs.Here,we report high-resolution angle-resolved photoemission spectroscopy(ARPES) studies on both pristine and Cl-doped CsPbBr_(3).The experimental band dispersions are extracted from ARPES spectra along both ■ and ■ high symmetry directions.DFT calculations are performed and directly compared with the ARPES data.Our results have revealed the band structure of Cl-doped CsPbBr_(3) for the first time,which have also unveiled the effective mass renormalization in the Cl-doped CsPbBr_(3) compound.Doping dependent measurements indicate that the chlorine doping could moderately tune the renormalization strength.These results will help understand the physical properties of LHPs as a function of doping.
基金The computations were enabled by resources provided by the Swedish National Infrastructure for Computing(SNIC)at HPC2N and NSC partially funded by the Swedish Research Council through grant agreement no.2018-05973.
文摘Anti-perovskites A3SnO(A=Ca,Sr,and Ba)are an important class of materials due to the emergence of Dirac cones and tiny mass gaps in their band structures originating from an intricate interplay of crystal symmetry,spin–orbit coupling,and band overlap.This provides an exciting playground for modulating their electronic properties in the two-dimensional(2D)limit.Herein,we employ first-principles density functional theory(DFT)calculations by combining dispersion-corrected SCAN+rVV10 and mBJ functionals for a comprehensive side-by-side comparison of the structural,thermodynamic,dynamical,mechanical,electronic,and thermoelectric properties of bulk and monolayer(one unit cell thick)A3SnO anti-perovskites.Our results show that 2D monolayers derived from bulk A3SnO anti-perovskites are structurally and energetically stable.Moreover,Rashba-type splitting in the electronic structure of Ca3SnO and Sr3SnO monolayers is observed owing to strong spin–orbit coupling and inversion asymmetry.On the other hand,monolayer Ba3SnO exhibits Dirac cone at the high-symmetryΓpoint due to the domination of band overlap.Based on the predicted electronic transport properties,it is shown that inversion asymmetry plays an essential character such that the monolayers Ca3SnO and Sr3SnO outperform thermoelectric performance of their bulk counterparts.
基金the National Natural Science Foundation of China (50374008)
文摘Pr(Ga1-xCox)0.9Mg0.1O3-δ (x=0, 0.1, 0.2, 0.3) was synthesized using solid-state reaction technique to study the effects of Co doping on their structure and properties. Room and high temperature XRD, DSC and electrical conductivity measurement with D.C. four-probe technique were adopted in the study. The results indicated its orthorhombic-distorted perovskite structure at room temperature. PrGa0.9Mg0.1O3-δ maintained its orthorhombic-distorted structure between 298 and 1173 K. For Pr(Ga0.7Co0.3)0.9Mg0.1O3-δ, such structure existed below 873 K. From 873 to 1173 K, it possessed tetragonal structure. The transformation from orthorhombic to tetragonal structure at 873 K was of second order. The intrinsic volume thermal expansion of tetragonal structured Pr(Ga0.7Co0.3)0.9Mg0.1O3-δ Was about 50% higher than those of PrGa0.9Mg0.1O3-δ. The electrical conductivity increased with Co content. The activation energies of conduction for Pr(Ga1-xCox)0.9Mg0.1O3-δ are in range from 0.197 to 0.246 eV, much lower than 1.543 eV for PrGaO3.
基金Singapore Economic Development BoardEnergy Market Authority of Singapore+3 种基金National Research Foundation SingaporeNational University of SingaporeInternational Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)of ChinaBoya Postdoctoral program of Peking University。
文摘Metal halide perovskites possess appealing optoelectronic properties and have been widely applied for solar energy harvesting and light emitting.Although perovskite solar cells(PeSCs)and perovskite light-emitting diodes(PeLEDs)have been developed rapidly in recent years,there are still no universal rules for the selection of perovskites to achieve high-performance optoelectronic devices.In this review,the working mechanisms of PeSCs and PeLEDs are first demonstrated with the discussion on the factors which determine the device performance.We then examine the optoelectronic properties of perovskites with structures modulated from 3D,2D,1D to 0D,and analyze the corresponding structure-property relationships in terms of photo-electric and electric-photo conversion processes.Based on the unique optoelectronic properties of structurally modulated perovskites,we put forward the concept of structural assembling engineering that integrate the merits of different types of perovskites within one matrix and elaborate their excellent properties for applications of both PeSCs and PeLEDs.Finally,we discuss the potential challenges and provide our perspectives on the structural assembling engineering of perovskites for future optoelectronic applications.
基金supported by the National Natural Science Foundation of China(Nos.11964017,51972157,11864022,and 51662028)the Natural Science Foundation of Jiangxi Province(No.20192ACB21017)。
文摘The resistive switching(RS)mechanism of hybrid organic–inorganic perovskites has not been clearly understood until now.A switchable diode-like RS behavior in MAPbBr3 single crystals using Au(or Pt)symmetric electrodes is reported.Both the high resistance state(HRS)and low resistance state(LRS)are electrode-area dependent and light responsive.We propose an electric-fielddriven inner p–n junction accompanied by a trap-controlled space-charge-limited conduction(SCLC)conduction mechanism to explain this switchable diode-like RS behavior in MAPbBr_(3) single crystals.