With industrial grade Al(OH)3 as raw materials, the self dispersion nanosized AlOOH crystal powder were prepared by the sol-hydrothermal method. The results of XRD and TEM show that the nanosized AlOOH could automat...With industrial grade Al(OH)3 as raw materials, the self dispersion nanosized AlOOH crystal powder were prepared by the sol-hydrothermal method. The results of XRD and TEM show that the nanosized AlOOH could automatically disperse to a single-dispersing state in water without surface modification, dispersant, additive and accessional conditions (ultrasonic wave dispersing, ball-mill dispersing). The application results of the product indicate that the nanosized AlOOH can be composed into a toughened nanocomposites without surface modification. Accordingly, the self dispersion characteristic and mechanism of hydrothermal crystallization and charging composite dispersion of nanosized AIOOH are found, and a new technique of preparing polymer/inorganic nanocomposites is proposed, which is called blending compositing new techniques of sol even dispersing at auasi-homogeneous phase.展开更多
基金Guangxi Provincial Natural Sciences Foundation, (No.0640041)Guangxi Provincial Scientific Research and Technical Develop-ment Program Project (No. 0141033)Prior Period Research Special Fund of Significant Basic Research of National Science and Technology Depart-ment (No. 2005CCA00200)
文摘With industrial grade Al(OH)3 as raw materials, the self dispersion nanosized AlOOH crystal powder were prepared by the sol-hydrothermal method. The results of XRD and TEM show that the nanosized AlOOH could automatically disperse to a single-dispersing state in water without surface modification, dispersant, additive and accessional conditions (ultrasonic wave dispersing, ball-mill dispersing). The application results of the product indicate that the nanosized AlOOH can be composed into a toughened nanocomposites without surface modification. Accordingly, the self dispersion characteristic and mechanism of hydrothermal crystallization and charging composite dispersion of nanosized AIOOH are found, and a new technique of preparing polymer/inorganic nanocomposites is proposed, which is called blending compositing new techniques of sol even dispersing at auasi-homogeneous phase.
文摘报道一种制备Li_2TiO_3的新方法—无机沉淀胶溶法。以硫酸氧钛为钛源、乙酸锂为锂源、过氧化氢为络合剂,经沉淀-胶溶制备钛-锂溶胶体系,再经干燥、煅烧、酸洗制备偏钛酸型锂吸附剂。采用FTIR、TG-DSC、XRD、SEM、ICP、Zetasizer Nano及旋转式黏度计等测试、表征手段,考察了各制备条件对溶胶体系稳定性、干凝胶及Li_2TiO_3显微结构特性及性能的影响。结果表明:乙酸锂为锂源,体系pH值为7,Ti^(4+)浓度为0.2 mol/L,经陈化24h,可得到黏度为7.3 m Pa·s,Zeta电位为-29.5 m V的稳定溶胶体系。红外光谱分析表明干凝胶中含过氧键;干凝胶较佳煅烧温度和煅烧时间分别为750℃、2 h,制备得到β-Li_2TiO_3,;将β-Li_2TiO_3用0.2 mol/L盐酸溶液进行酸洗制备得到偏钛酸型锂吸附剂H_2TiO_3,锂的酸洗率为85.31%,锂的再吸附容量为27.15 mg/g。