With the widespread ban on the use of antibiotics in swine feed, alternative measures need to be sought to maintain swine health and performance, Antimicrobial peptides (AMPs) are part of the nonspecific defense sys...With the widespread ban on the use of antibiotics in swine feed, alternative measures need to be sought to maintain swine health and performance, Antimicrobial peptides (AMPs) are part of the nonspecific defense system and are natural antibiotics produced by plants, insects, mammalians, and micro-organisms as well as by chemical synthesis. Due to their broad microbicidal activity against various fungi, bacteria and enveloped viruses AMPs are a potential alternative to conventional antibiotics for use in swine production. This review focuses on the structure and mechanism of action of AMPs, as well as their effects on performance, immune function and intestinal health in pigs. The aim is to provide support for the application of AMPs as feed additives replacing antibiotics in swine nutrition.展开更多
The lack of newly developed antibiotics, together with the increase in multi-resistance of relevant pathogenic bacteria in the last decades, represents an alarming signal for human health care worldwide. The number of...The lack of newly developed antibiotics, together with the increase in multi-resistance of relevant pathogenic bacteria in the last decades, represents an alarming signal for human health care worldwide. The number of severely infected persons increases not only in developing but also in highly industrialized countries. This relates in first line to the most severe form of a bacterial infection, sepsis and the septic shock syndrome, with high mortality on critical care units. No particular anti-sepsis drug is available, and the therapy with conventional antibiotics more and more fails to provide a survival benefit. Due to the fact that the pharmaceutical industry has withdrawn to a high degree from the development of anti-infectious agents, a huge challenge for health care is approaching in the 21 st century. In this article, these problems are outlined and possible alternatives are presented which may be helpful to solve the problem.展开更多
The massive use of antibiotics in aquaculture and resulted antibacterial resistance problem urgently need antibiotic substitutions. Herein, we report a promising substitution of aquaculture antibiotics using a synergi...The massive use of antibiotics in aquaculture and resulted antibacterial resistance problem urgently need antibiotic substitutions. Herein, we report a promising substitution of aquaculture antibiotics using a synergistic combination of biodegradable peptide polymers and curcumin, a natural compound from plant. The synergistic combination shows strong antibacterial activity against V. fluvialis and some other common bacteria in aquaculture. The membrane-damaging antibacterial mechanism echoes our finding that the synergistic combination will not induce bacteria to develop resistance after continuous use. The synergistic combination also displays effective cure on V. fluvialis-infected zebrafish. The biodegradability of the peptide polymer enables the combination to lose antibacterial activity and will not cause selective pressure on bacterial in the environment. Our study indicates potential application of synergistic composition, biodegradable peptide polymer and curcumin, as promising antibiotic substitution in aquaculture, which represents a promising strategy to address the global challenge of antimicrobial resistance.展开更多
This study is done with the aim to bring together the various antimicrobial peptides that are present in the crustacean hemolymph and their sources along with its characteristics.Invertebrates lack immune systems that...This study is done with the aim to bring together the various antimicrobial peptides that are present in the crustacean hemolymph and their sources along with its characteristics.Invertebrates lack immune systems that involve antigen-antibody reactions and do not have an immune memory, therefore most invertebrate species show no evidence of acquired immunity.Crustaceans possess an open circulatory system, where nutrients, oxygen, hormones, and cells are distributed in the hemolymph. They lack adaptive immune system and rely exclusively on their innate immune mechanisms that include both cellular and humoral responses. Antimicrobial peptides and proteins form an important means of host defense in eukaryotes. In addition to their role as endogenous antibiotics, antimicrobial peptides have functions in inflammation,wound repair and regulation of the adaptive immune system. Over the past several years, many antimicrobial peptides have been found and characterized in crabs.展开更多
Traditionally, antibiotics are included in animal feed at subtherapeutic levels for growth promotion and disease prevention.However, recent links between in-feed antibiotics and a rise in antibiotic-resistant pathogen...Traditionally, antibiotics are included in animal feed at subtherapeutic levels for growth promotion and disease prevention.However, recent links between in-feed antibiotics and a rise in antibiotic-resistant pathogens have led to a ban of all antibiotics in livestock production by the European Union in January 2006 and a removal of medically important antibiotics in animal feeds in the United States in January 2017.An urgent need arises for antibiotic alternatives capable of maintaining animal health and productivity without triggering antimicrobial resistance.Host defense peptides(HDP) are a critical component of the animal innate immune system with direct antimicrobial and immunomodulatory activities.While in-feed supplementation of recombinant or synthetic HDP appears to be effective in maintaining animal performance and alleviating clinical symptoms in the context of disease, dietary modulation of the synthesis of endogenous host defense peptides has emerged as a cost-effective,antibiotic-alternative approach to disease control and prevention.Several different classes of smallmolecule compounds have been found capable of promoting HDP synthesis.Among the most efficacious compounds are butyrate and vitamin D.Moreover, butyrate and vitamin D synergize with each other in enhancing HDP synthesis.This review will focus on the regulation of HDP synthesis by butyrate and vitamin D in humans, chickens, pigs, and cattle and argue for potential application of HDP-inducing compounds in antibiotic-free livestock production.展开更多
基金supported by the National Natural Science Foundation of China(No.3133007531372326)
文摘With the widespread ban on the use of antibiotics in swine feed, alternative measures need to be sought to maintain swine health and performance, Antimicrobial peptides (AMPs) are part of the nonspecific defense system and are natural antibiotics produced by plants, insects, mammalians, and micro-organisms as well as by chemical synthesis. Due to their broad microbicidal activity against various fungi, bacteria and enveloped viruses AMPs are a potential alternative to conventional antibiotics for use in swine production. This review focuses on the structure and mechanism of action of AMPs, as well as their effects on performance, immune function and intestinal health in pigs. The aim is to provide support for the application of AMPs as feed additives replacing antibiotics in swine nutrition.
基金Supported by German ministry BMBF for financial help,Nos.01GUO824 and 01GUO826
文摘The lack of newly developed antibiotics, together with the increase in multi-resistance of relevant pathogenic bacteria in the last decades, represents an alarming signal for human health care worldwide. The number of severely infected persons increases not only in developing but also in highly industrialized countries. This relates in first line to the most severe form of a bacterial infection, sepsis and the septic shock syndrome, with high mortality on critical care units. No particular anti-sepsis drug is available, and the therapy with conventional antibiotics more and more fails to provide a survival benefit. Due to the fact that the pharmaceutical industry has withdrawn to a high degree from the development of anti-infectious agents, a huge challenge for health care is approaching in the 21 st century. In this article, these problems are outlined and possible alternatives are presented which may be helpful to solve the problem.
基金supported by the National Natural Science Foundation of China(Nos.22075078,21861162010)the Program of Shanghai Academic/Technology Research Leader(20XD1421400)+1 种基金Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission)the Fundamental Research Funds for the Central Universities(JKD01211520).
文摘The massive use of antibiotics in aquaculture and resulted antibacterial resistance problem urgently need antibiotic substitutions. Herein, we report a promising substitution of aquaculture antibiotics using a synergistic combination of biodegradable peptide polymers and curcumin, a natural compound from plant. The synergistic combination shows strong antibacterial activity against V. fluvialis and some other common bacteria in aquaculture. The membrane-damaging antibacterial mechanism echoes our finding that the synergistic combination will not induce bacteria to develop resistance after continuous use. The synergistic combination also displays effective cure on V. fluvialis-infected zebrafish. The biodegradability of the peptide polymer enables the combination to lose antibacterial activity and will not cause selective pressure on bacterial in the environment. Our study indicates potential application of synergistic composition, biodegradable peptide polymer and curcumin, as promising antibiotic substitution in aquaculture, which represents a promising strategy to address the global challenge of antimicrobial resistance.
基金financially supported by University Grants Commission,Government of India
文摘This study is done with the aim to bring together the various antimicrobial peptides that are present in the crustacean hemolymph and their sources along with its characteristics.Invertebrates lack immune systems that involve antigen-antibody reactions and do not have an immune memory, therefore most invertebrate species show no evidence of acquired immunity.Crustaceans possess an open circulatory system, where nutrients, oxygen, hormones, and cells are distributed in the hemolymph. They lack adaptive immune system and rely exclusively on their innate immune mechanisms that include both cellular and humoral responses. Antimicrobial peptides and proteins form an important means of host defense in eukaryotes. In addition to their role as endogenous antibiotics, antimicrobial peptides have functions in inflammation,wound repair and regulation of the adaptive immune system. Over the past several years, many antimicrobial peptides have been found and characterized in crabs.
基金supported in part by Oklahoma Center for the Advancement of Science and Technology grants(AR12.2-077,HR12-051,and AR15.049)Oklahoma Agricultural Experiment Station Project(H-3025)+1 种基金National Science Foundation of China grant(31528018)supported by a USDA-NIFA National Needs Fellowship grant(2013-38420-20500)
文摘Traditionally, antibiotics are included in animal feed at subtherapeutic levels for growth promotion and disease prevention.However, recent links between in-feed antibiotics and a rise in antibiotic-resistant pathogens have led to a ban of all antibiotics in livestock production by the European Union in January 2006 and a removal of medically important antibiotics in animal feeds in the United States in January 2017.An urgent need arises for antibiotic alternatives capable of maintaining animal health and productivity without triggering antimicrobial resistance.Host defense peptides(HDP) are a critical component of the animal innate immune system with direct antimicrobial and immunomodulatory activities.While in-feed supplementation of recombinant or synthetic HDP appears to be effective in maintaining animal performance and alleviating clinical symptoms in the context of disease, dietary modulation of the synthesis of endogenous host defense peptides has emerged as a cost-effective,antibiotic-alternative approach to disease control and prevention.Several different classes of smallmolecule compounds have been found capable of promoting HDP synthesis.Among the most efficacious compounds are butyrate and vitamin D.Moreover, butyrate and vitamin D synergize with each other in enhancing HDP synthesis.This review will focus on the regulation of HDP synthesis by butyrate and vitamin D in humans, chickens, pigs, and cattle and argue for potential application of HDP-inducing compounds in antibiotic-free livestock production.