The hydrolysis of velvet bean (Mucuna pruriens) protein in the presence of Alcalase?-Flavourzyme? and Pepsin-Pancreatin was investigated. The results showed that Alcalase?-Flavourzyme? (29.08%) sequential system catal...The hydrolysis of velvet bean (Mucuna pruriens) protein in the presence of Alcalase?-Flavourzyme? and Pepsin-Pancreatin was investigated. The results showed that Alcalase?-Flavourzyme? (29.08%) sequential system catalyzed the hydrolysis most efficiently that Pepsin-Pancreatin (24.78%). In addition, the higher ACE-I inhibitory activity was achieved with the sequential system Alcalase?-Flavourzyme? (33.13%). Furthermore, the concentration of peptides employing an ultrafiltration (UF) system or their purification by gel filtration chromatography showed that the oligomeric peptides with lower molecular weight registered the highest ACE-I inhibitory activity. It has been demonstrated that Mucuna pruriens protein hydrolysates could serve as a source of peptides with ACE inhibitory activity and this activity can be attributed mainly to the mixture of short peptides in the hydrolysate.展开更多
文摘The hydrolysis of velvet bean (Mucuna pruriens) protein in the presence of Alcalase?-Flavourzyme? and Pepsin-Pancreatin was investigated. The results showed that Alcalase?-Flavourzyme? (29.08%) sequential system catalyzed the hydrolysis most efficiently that Pepsin-Pancreatin (24.78%). In addition, the higher ACE-I inhibitory activity was achieved with the sequential system Alcalase?-Flavourzyme? (33.13%). Furthermore, the concentration of peptides employing an ultrafiltration (UF) system or their purification by gel filtration chromatography showed that the oligomeric peptides with lower molecular weight registered the highest ACE-I inhibitory activity. It has been demonstrated that Mucuna pruriens protein hydrolysates could serve as a source of peptides with ACE inhibitory activity and this activity can be attributed mainly to the mixture of short peptides in the hydrolysate.