The manufacturing process, characteristics, and application results of arod-like penetrative additive (the penetrative rod) were discussed. The components and functions ofthe penetrative rod were studied carefully. A ...The manufacturing process, characteristics, and application results of arod-like penetrative additive (the penetrative rod) were discussed. The components and functions ofthe penetrative rod were studied carefully. A large number of orthogonal combined tests were carriedout and over 100 sample molds were made. Ultimately the components were decided after carefulselection among these molds, mainly including hygroscopic major components and auxiliary material.The results of on-site practical application show that such an addictive can increase the waterpenetrative ability effectively and has a remarkable effect on preventing dust production duringcoal seam excavation. The penetrating radius, the infusing velocity and the dust-preventive effectwere systematically studied.展开更多
The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simu...The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simulation.Critical Rayleigh numbers are obtained numerically for the case of a uniform heat source in a layer with two fixed surfaces. The validity of both the linear instability and global nonlinear energy stability thresholds are tested using a three dimensional simulation. Our results show that the linear threshold accurately predicts the onset of instability in the basic steady state. However, the required time to arrive at the basic steady state increases significantly as the Rayleigh number tends to the linear threshold.展开更多
Nanodrugs capable of aggregating in the tumor microenvironment(TME)have demonstrated great efficiency in improving the therapeutic outcome.Among vari-ous approaches,the strategy utilizing electrostatic interaction as a...Nanodrugs capable of aggregating in the tumor microenvironment(TME)have demonstrated great efficiency in improving the therapeutic outcome.Among vari-ous approaches,the strategy utilizing electrostatic interaction as a driving force to achieve intratumor aggregation of nanodrugs has attracted great attention.However,the great difference between the two nanodrugs with varied physicochemical prop-erties makes their synchronous transport in blood circulation and equal-opportunity tumor uptake impossible,which significantly detracts from the beneficial effects of nanodrug aggregation inside tumors.We herein propose a new strategy to construct a pair of extremely similar nanodrugs,referred to as“twins-like nanodrugs(TLNs)”,which have identical physicochemical properties including the same morphology,size,and electroneutrality to render them the same blood circulation time and tumor entrance.The 1:1 mixture of TLNs(TLNs-Mix)intravenously injected into a mouse model efficiently accumulates in tumor sites and then transfers to oppositely charged nanodrugs for electrostatic interaction-driven coalescence via responding to matrix metalloproteinase-2(MMP-2)enriched in tumor.In addition to enhanced tumor retention,the thus-formed micron-sized aggregates show high echo intensity essen-tial for ultrasound imaging as well as ultrasound-triggered penetrative drug delivery.Owing to their distinctive features,the TLNs-Mix carrying sonosensitizer,immune adjuvant,and ultrasound contrast agent exert potent sonodynamic immunotherapy against hypovascular hepatoma,demonstrating their great potential in treating solid malignancies.展开更多
An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather condi...An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed.展开更多
Effect of isobutyl-triethoxy-silane penetrative protective agent on the carbonation resistance of the concrete was studied.The concrete specimens for the 28 d accelerated carbonation process were manufactured with w/c...Effect of isobutyl-triethoxy-silane penetrative protective agent on the carbonation resistance of the concrete was studied.The concrete specimens for the 28 d accelerated carbonation process were manufactured with w/c of 0.49 and 0.64,both in the presence and absence of silane and mineral admixture.The penetration of isobutyl-triethoxy-silane and the carbonation of concrete were investigated by penetration depth,carbonation depth,XRD,SEM,and pore size distribution.The results showed that concrete compactness played an important role in the silane penetration and carbonation resistance.Penetration depth of silane-treated concrete mainly depended on the compactness of the concrete,and could not remarkably change through the accelerated carbonation process.In the accelerated carbonation process,penetrative protective agent improved the carbonation resistance of the higher compactness concretes but accelerated the carbonization process of the lower compactness concretes.As penetrative protective agent penetrated along the external connectivity pores into concrete not filling the entire surface area,the inorganic film could not fully protect the Ca(OH)_2 phase from carbonation.After 28 d accelerated carbonation,fibrous hydration products disappeared and the surface holes decreased.Due to the formation of carbonized products,the porosity of the concrete surface decreased,especially in high-strength concrete.展开更多
AIM: To review the outcomes of liver trauma in patients with hepatic injuries only and in patients with associated injuries outside the liver.METHODS: Data of liver trauma patients presented to our center from January...AIM: To review the outcomes of liver trauma in patients with hepatic injuries only and in patients with associated injuries outside the liver.METHODS: Data of liver trauma patients presented to our center from January 2003 to October 2013 were reviewed. The patients were divided into two groups. Group 1 consisted of patients who had hepatic injuries only. Group 2 consisted of patients who also had associated injuries outside the liver.RESULTS: Seven(30.4%) patients in group 1 and 10(28.6%) patients in group 2 received non-operative management; the rest underwent operation. Blunt trauma occurred in 82.8%(48/58) of the patients and penetrative trauma in 17.2%(10/58). A higher injury severity score(ISS) was observed in group 2(median 45 vs 25, P < 0.0001). More patients in group 1 were hemodynamically stable(65.2% vs 37.1%, P = 0.036). Other parameters were comparable between groups. Group 1 had better 30-d survival(91.3% vs 71.4%, P = 0.045). On multivariate analysis using the logistic regression model, ISS was found to be associated with mortality(P = 0.004, hazard ratio = 1.035, 95%CI:CONCLUSION: Liver trauma patients with multiple injuries are relatively unstable on presentation. Despite a higher ISS in group 2, non-operative management was possible for selected patients. Associated injuries outside the liver usually account for morbidity and mortality.展开更多
Penetrative Bénard-Maranagoni convection in micropolar ferromagnetic fluid layer in the presence of a uniform vertical magnetic field has been investigated via internal heating model. The lower boundary is consid...Penetrative Bénard-Maranagoni convection in micropolar ferromagnetic fluid layer in the presence of a uniform vertical magnetic field has been investigated via internal heating model. The lower boundary is considered to be rigid at constant temperature, while the upper boundary free open to the atmosphere is flat and subject to a convective surface boundary condition. The resulting eigenvalue problem is solved numerically by Galerkin method. The stability of the system is found to be dependent on the dimensionless internal heat source strength Ns, magnetic parameter M1, the non-linearity of magnetization parameter M3, coupling parameter N1, spin diffusion parameter N3 and micropolar heat conduction parameter N5. The results show that the onset of ferroconvection is delayed with an increase in N1 and N5 but hastens the onset of ferroconvection with an increase in M1, M3, N3 and Ns. The dimension of ferroconvection cells increases when there is an increase in M3, N1, N5 and Ns and decrease in M1 and N3.展开更多
Lanping-Simao Mesozoic-Cenozoic Basin(LSB) in western Yunnan Province, China, is sandwiched between Changshan-Ailaoshan Fault Zone(CAF) and Lancang River Fault Zone(LF), and located in the conjunction belt between Eur...Lanping-Simao Mesozoic-Cenozoic Basin(LSB) in western Yunnan Province, China, is sandwiched between Changshan-Ailaoshan Fault Zone(CAF) and Lancang River Fault Zone(LF), and located in the conjunction belt between Eurasian and Indian plates. It was generally suggested that the development of the basin has been controlled by the展开更多
In the northern Bay of Bengal,the existence of intense temperature inversion during winter is a widely accepted phenomenon.However,occurrences of temperature inversion during other seasons and the spatial distribution...In the northern Bay of Bengal,the existence of intense temperature inversion during winter is a widely accepted phenomenon.However,occurrences of temperature inversion during other seasons and the spatial distribution within and adjacent to the Bay of Bengal are not well understood.In this study,a higher resolution spatiotemporal variation of temperature inversion and its mechanisms are examined with mixed layer heat and salt budget analysis utilizing long-term Argo(2004 to 2020)and RAMA(2007 to 2020)profiles data in the Bay of Bengal and eastern equatorial Indian Ocean(EEIO).Temperature inversion exists(17.5%of the total 39293 Argo and 51.6%of the 28894 RAMA profiles)throughout the year in the entire study area.It shows strong seasonal variation,with the highest occurrences in winter and the lowest in spring.Besides winter inversion in the northern Bay of Bengal,two other regions with frequent temperature inversion are identified in this study for the first time:the northeastern part of the Bay of Bengal and the eastern part of the EEIO during summer and autumn.Driving processes of temperature inversion for different subregions are revealed in the current study.Penetration of heat(mean~25 W/m;)below the haline-stratified shallow mixed layer leads to a relatively warmer subsurface layer along with the simultaneous cooling tendency in mixed layer,which controls more occurrence of temperature inversion in the northern Bay of Bengal throughout the year.Comparatively lower cooling tendency due to net surface heat loss and higher mixed layer salinity leaves the southern part of the bay less supportive to the formation of temperature inversion than the northern bay.In the EEIO,slightly cooling tendency in the mixed layer along with the subduction of warm-salty Arabian Sea water beneath the cold-fresher Bay of Bengal water,and downwelling of thermocline creates a favorable environment for forming temperature inversion mainly during summer and autumn.Deeper isothermal layer depth,and thicker barrier layer thickness inten展开更多
Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging ...Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging because of difficulties such as high non-linearity of impact resistance,manufacturing limitations of reactive materials and high expenses of penetration experiments.In this study,a design optimization methodology for the reactive material structure is developed based on the finite element analysis.A finite element model for penetration analysis is introduced to save the expenses of the experiments.Impact resistance is assessed through the analysis,and result is calibrated by comparing with experimental results.Based on the model,topology optimization is introduced to determine shape of the structure.The design variables and constraints of the optimization are proposed considering the manufacturing limitations,and the optimal shape that can be manufactured by cold spraying is determined.Based on the optimal shape,size optimization is introduced to determine the geometric dimensions of the structure.As a result,optimal design of the reactive material structure and steel case of the penetrative projectile,which maximizes the impact resistance,is determined.Using the design process proposed in this study,reactive material structures can be designed considering not only mechanical performances but also manufacturing limitations,with reasonable time and cost.展开更多
Acupoint to acupoint penetrative needling method has a long history in traditional Chinese medicine. Chinese physicians in various dynasties hold that this type of needling method can strengthen the needling sensation...Acupoint to acupoint penetrative needling method has a long history in traditional Chinese medicine. Chinese physicians in various dynasties hold that this type of needling method can strengthen the needling sensations and raise the therapeutic effect in clinical practice. This needling method can be divided into straight penetration, oblique penetration and transverse penetration. In clinical application, it can also be divided into external medial meridian penetration, a single meridian penetration, neighboring meridians penetration, and neighboring acupoints penetration, etc. in accordance with the involved acupoints and meridians. Clinical practice demonstrates that penetrative needling possesses advantages of stronger needling sensations, better therapeutic effect and fewer acupoints selection. For this reason, it is extensively applied in clinic.展开更多
文摘The manufacturing process, characteristics, and application results of arod-like penetrative additive (the penetrative rod) were discussed. The components and functions ofthe penetrative rod were studied carefully. A large number of orthogonal combined tests were carriedout and over 100 sample molds were made. Ultimately the components were decided after carefulselection among these molds, mainly including hygroscopic major components and auxiliary material.The results of on-site practical application show that such an addictive can increase the waterpenetrative ability effectively and has a remarkable effect on preventing dust production duringcoal seam excavation. The penetrating radius, the infusing velocity and the dust-preventive effectwere systematically studied.
基金supported by the Iraqi ministry of higher education and scientific research
文摘The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simulation.Critical Rayleigh numbers are obtained numerically for the case of a uniform heat source in a layer with two fixed surfaces. The validity of both the linear instability and global nonlinear energy stability thresholds are tested using a three dimensional simulation. Our results show that the linear threshold accurately predicts the onset of instability in the basic steady state. However, the required time to arrive at the basic steady state increases significantly as the Rayleigh number tends to the linear threshold.
基金Key Areas Research and Development Program of Guangzhou,Grant/Award Number:202007020006National Natural Science Foundation of China,Grant/Award Numbers:51933011,31971296,52173125,82102194Natural Science Foundation of the Guangdong Province,Grant/Award Numbers:2021A1515111006,2023A1515011822。
文摘Nanodrugs capable of aggregating in the tumor microenvironment(TME)have demonstrated great efficiency in improving the therapeutic outcome.Among vari-ous approaches,the strategy utilizing electrostatic interaction as a driving force to achieve intratumor aggregation of nanodrugs has attracted great attention.However,the great difference between the two nanodrugs with varied physicochemical prop-erties makes their synchronous transport in blood circulation and equal-opportunity tumor uptake impossible,which significantly detracts from the beneficial effects of nanodrug aggregation inside tumors.We herein propose a new strategy to construct a pair of extremely similar nanodrugs,referred to as“twins-like nanodrugs(TLNs)”,which have identical physicochemical properties including the same morphology,size,and electroneutrality to render them the same blood circulation time and tumor entrance.The 1:1 mixture of TLNs(TLNs-Mix)intravenously injected into a mouse model efficiently accumulates in tumor sites and then transfers to oppositely charged nanodrugs for electrostatic interaction-driven coalescence via responding to matrix metalloproteinase-2(MMP-2)enriched in tumor.In addition to enhanced tumor retention,the thus-formed micron-sized aggregates show high echo intensity essen-tial for ultrasound imaging as well as ultrasound-triggered penetrative drug delivery.Owing to their distinctive features,the TLNs-Mix carrying sonosensitizer,immune adjuvant,and ultrasound contrast agent exert potent sonodynamic immunotherapy against hypovascular hepatoma,demonstrating their great potential in treating solid malignancies.
基金supported by the Heilongjiang Touyan Innovative Program Teammade possible through the generous support of the NSFC (Grant No. 52176065)the Fundamental Research Funds for the Central Universities(Grant No. 2022FRFK060022)
文摘An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed.
基金Funded by the National Sci-Tech Support Plan of China(No.2013BAJ10B05)Marine Interdisciplinary Research Guide Fund of Zhejiang University(No.2012HY003B)
文摘Effect of isobutyl-triethoxy-silane penetrative protective agent on the carbonation resistance of the concrete was studied.The concrete specimens for the 28 d accelerated carbonation process were manufactured with w/c of 0.49 and 0.64,both in the presence and absence of silane and mineral admixture.The penetration of isobutyl-triethoxy-silane and the carbonation of concrete were investigated by penetration depth,carbonation depth,XRD,SEM,and pore size distribution.The results showed that concrete compactness played an important role in the silane penetration and carbonation resistance.Penetration depth of silane-treated concrete mainly depended on the compactness of the concrete,and could not remarkably change through the accelerated carbonation process.In the accelerated carbonation process,penetrative protective agent improved the carbonation resistance of the higher compactness concretes but accelerated the carbonization process of the lower compactness concretes.As penetrative protective agent penetrated along the external connectivity pores into concrete not filling the entire surface area,the inorganic film could not fully protect the Ca(OH)_2 phase from carbonation.After 28 d accelerated carbonation,fibrous hydration products disappeared and the surface holes decreased.Due to the formation of carbonized products,the porosity of the concrete surface decreased,especially in high-strength concrete.
文摘AIM: To review the outcomes of liver trauma in patients with hepatic injuries only and in patients with associated injuries outside the liver.METHODS: Data of liver trauma patients presented to our center from January 2003 to October 2013 were reviewed. The patients were divided into two groups. Group 1 consisted of patients who had hepatic injuries only. Group 2 consisted of patients who also had associated injuries outside the liver.RESULTS: Seven(30.4%) patients in group 1 and 10(28.6%) patients in group 2 received non-operative management; the rest underwent operation. Blunt trauma occurred in 82.8%(48/58) of the patients and penetrative trauma in 17.2%(10/58). A higher injury severity score(ISS) was observed in group 2(median 45 vs 25, P < 0.0001). More patients in group 1 were hemodynamically stable(65.2% vs 37.1%, P = 0.036). Other parameters were comparable between groups. Group 1 had better 30-d survival(91.3% vs 71.4%, P = 0.045). On multivariate analysis using the logistic regression model, ISS was found to be associated with mortality(P = 0.004, hazard ratio = 1.035, 95%CI:CONCLUSION: Liver trauma patients with multiple injuries are relatively unstable on presentation. Despite a higher ISS in group 2, non-operative management was possible for selected patients. Associated injuries outside the liver usually account for morbidity and mortality.
文摘Penetrative Bénard-Maranagoni convection in micropolar ferromagnetic fluid layer in the presence of a uniform vertical magnetic field has been investigated via internal heating model. The lower boundary is considered to be rigid at constant temperature, while the upper boundary free open to the atmosphere is flat and subject to a convective surface boundary condition. The resulting eigenvalue problem is solved numerically by Galerkin method. The stability of the system is found to be dependent on the dimensionless internal heat source strength Ns, magnetic parameter M1, the non-linearity of magnetization parameter M3, coupling parameter N1, spin diffusion parameter N3 and micropolar heat conduction parameter N5. The results show that the onset of ferroconvection is delayed with an increase in N1 and N5 but hastens the onset of ferroconvection with an increase in M1, M3, N3 and Ns. The dimension of ferroconvection cells increases when there is an increase in M3, N1, N5 and Ns and decrease in M1 and N3.
文摘Lanping-Simao Mesozoic-Cenozoic Basin(LSB) in western Yunnan Province, China, is sandwiched between Changshan-Ailaoshan Fault Zone(CAF) and Lancang River Fault Zone(LF), and located in the conjunction belt between Eurasian and Indian plates. It was generally suggested that the development of the basin has been controlled by the
基金The Marine Scholarship of ChinaChina Scholarship Council(CSC)for International Doctoral Students under contract No.2017SOA016552the National Natural Science Foundation of China under contract Nos U2106204 and 41676003。
文摘In the northern Bay of Bengal,the existence of intense temperature inversion during winter is a widely accepted phenomenon.However,occurrences of temperature inversion during other seasons and the spatial distribution within and adjacent to the Bay of Bengal are not well understood.In this study,a higher resolution spatiotemporal variation of temperature inversion and its mechanisms are examined with mixed layer heat and salt budget analysis utilizing long-term Argo(2004 to 2020)and RAMA(2007 to 2020)profiles data in the Bay of Bengal and eastern equatorial Indian Ocean(EEIO).Temperature inversion exists(17.5%of the total 39293 Argo and 51.6%of the 28894 RAMA profiles)throughout the year in the entire study area.It shows strong seasonal variation,with the highest occurrences in winter and the lowest in spring.Besides winter inversion in the northern Bay of Bengal,two other regions with frequent temperature inversion are identified in this study for the first time:the northeastern part of the Bay of Bengal and the eastern part of the EEIO during summer and autumn.Driving processes of temperature inversion for different subregions are revealed in the current study.Penetration of heat(mean~25 W/m;)below the haline-stratified shallow mixed layer leads to a relatively warmer subsurface layer along with the simultaneous cooling tendency in mixed layer,which controls more occurrence of temperature inversion in the northern Bay of Bengal throughout the year.Comparatively lower cooling tendency due to net surface heat loss and higher mixed layer salinity leaves the southern part of the bay less supportive to the formation of temperature inversion than the northern bay.In the EEIO,slightly cooling tendency in the mixed layer along with the subduction of warm-salty Arabian Sea water beneath the cold-fresher Bay of Bengal water,and downwelling of thermocline creates a favorable environment for forming temperature inversion mainly during summer and autumn.Deeper isothermal layer depth,and thicker barrier layer thickness inten
基金the Agency for Defense Development,Republic of Korea[grant number UD170110GD].
文摘Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging because of difficulties such as high non-linearity of impact resistance,manufacturing limitations of reactive materials and high expenses of penetration experiments.In this study,a design optimization methodology for the reactive material structure is developed based on the finite element analysis.A finite element model for penetration analysis is introduced to save the expenses of the experiments.Impact resistance is assessed through the analysis,and result is calibrated by comparing with experimental results.Based on the model,topology optimization is introduced to determine shape of the structure.The design variables and constraints of the optimization are proposed considering the manufacturing limitations,and the optimal shape that can be manufactured by cold spraying is determined.Based on the optimal shape,size optimization is introduced to determine the geometric dimensions of the structure.As a result,optimal design of the reactive material structure and steel case of the penetrative projectile,which maximizes the impact resistance,is determined.Using the design process proposed in this study,reactive material structures can be designed considering not only mechanical performances but also manufacturing limitations,with reasonable time and cost.
文摘Acupoint to acupoint penetrative needling method has a long history in traditional Chinese medicine. Chinese physicians in various dynasties hold that this type of needling method can strengthen the needling sensations and raise the therapeutic effect in clinical practice. This needling method can be divided into straight penetration, oblique penetration and transverse penetration. In clinical application, it can also be divided into external medial meridian penetration, a single meridian penetration, neighboring meridians penetration, and neighboring acupoints penetration, etc. in accordance with the involved acupoints and meridians. Clinical practice demonstrates that penetrative needling possesses advantages of stronger needling sensations, better therapeutic effect and fewer acupoints selection. For this reason, it is extensively applied in clinic.