This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0....This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.展开更多
We report an attempt to reveal the nonlinear dynamic behavior of a classical rotating pendulum system subjected to combined excitations of constant force and periodic excitation.The unperturbed system characterized by...We report an attempt to reveal the nonlinear dynamic behavior of a classical rotating pendulum system subjected to combined excitations of constant force and periodic excitation.The unperturbed system characterized by strong irrational nonlinearity bears significant similarities to the coupling of a simple pendulum and a smooth and discontinuous(SD)oscillator,especially the phase trajectory with coexistence of Duffing-type and pendulum-type homoclinic orbits.In order to learn the effect of constant force on this pendulum system,all types of phase portraits are displayed by means of the Hamiltonian function with large constant excitation especially the transitions of complex singular closed orbits.Under sufficiently small perturbations of the viscous damping and constant excitation,the Melnikov method is used to analyze the global structure of the phase space and the feature of trajectories.It is shown,both theoretically and numerically,that this system undergoes a homoclinic bifurcation and then bifurcates a unique attracting rotating limit cycle.Finally,the estimation of the chaotic threshold of the rotating pendulum system with multiple excitations is calculated and the predicted periodic and chaotic motions can be shown by applying numerical simulations.展开更多
基金supported by the Natural Science Foundation of Ningxia(2022AAC05044)the National Natural Science Foundation of China(12161069)。
文摘This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11702078 and 11771115)the Natural Science Foundation of Hebei Province,China(Grant No.A2018201227)the High-Level Talent Introduction Project of Hebei University,China(Grant No.801260201111).
文摘We report an attempt to reveal the nonlinear dynamic behavior of a classical rotating pendulum system subjected to combined excitations of constant force and periodic excitation.The unperturbed system characterized by strong irrational nonlinearity bears significant similarities to the coupling of a simple pendulum and a smooth and discontinuous(SD)oscillator,especially the phase trajectory with coexistence of Duffing-type and pendulum-type homoclinic orbits.In order to learn the effect of constant force on this pendulum system,all types of phase portraits are displayed by means of the Hamiltonian function with large constant excitation especially the transitions of complex singular closed orbits.Under sufficiently small perturbations of the viscous damping and constant excitation,the Melnikov method is used to analyze the global structure of the phase space and the feature of trajectories.It is shown,both theoretically and numerically,that this system undergoes a homoclinic bifurcation and then bifurcates a unique attracting rotating limit cycle.Finally,the estimation of the chaotic threshold of the rotating pendulum system with multiple excitations is calculated and the predicted periodic and chaotic motions can be shown by applying numerical simulations.