By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method...By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametdc hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented. The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.展开更多
An implicit algorithm of Bi-penalty approximation with orthogonality projection for the numerical simulation of Bingham fluid flow problems is proposed in this paper. A Newton fluid flow with two kinds of artificial v...An implicit algorithm of Bi-penalty approximation with orthogonality projection for the numerical simulation of Bingham fluid flow problems is proposed in this paper. A Newton fluid flow with two kinds of artificial viscosity subjected to the inequality constraint is introduced to approximate the Bingham fluid flow. This approach can effectively simulate the Bingham fluid flow with floating rigid cores or fixing rigid cores.展开更多
For the traditional one-step formulations of using shell elements, the computations of the curvature variation and bending stiffness matrix were simplified by omitting the rotational DOFs (degrees of freedom) on the...For the traditional one-step formulations of using shell elements, the computations of the curvature variation and bending stiffness matrix were simplified by omitting the rotational DOFs (degrees of freedom) on the basis of initial flat blank and fully known final configuration. They were highly efficient but not suitable either for the forming processes with non-flat initial configurations or for one-step forward and multistep analyses. Thus, a one-step formulation based on the rotation-free BST (Basic Shell Triangle) element was presented. In this formulation, the penalty method was adopted to deal with contacts in the forming processes.展开更多
A conforming discontinuous Galerkinfinite element method was introduced by Ye and Zhang,on simplicial meshes and on polytopal meshes,which has theflexibility of using discontinuous approximation and an ultra simple form...A conforming discontinuous Galerkinfinite element method was introduced by Ye and Zhang,on simplicial meshes and on polytopal meshes,which has theflexibility of using discontinuous approximation and an ultra simple formulation.The main goal of this paper is to improve the above discontinuous Galerkinfinite element method so that it can handle nonhomogeneous Dirichlet boundary conditions effectively.In addition,the method has been generalized in terms of approximation of the weak gradient.Error estimates of optimal order are established for the correspond-ing discontinuousfinite element approximation in both a discrete H1 norm and the L2 norm.Numerical results are presented to confirm the theory.展开更多
文摘By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametdc hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented. The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.
文摘An implicit algorithm of Bi-penalty approximation with orthogonality projection for the numerical simulation of Bingham fluid flow problems is proposed in this paper. A Newton fluid flow with two kinds of artificial viscosity subjected to the inequality constraint is introduced to approximate the Bingham fluid flow. This approach can effectively simulate the Bingham fluid flow with floating rigid cores or fixing rigid cores.
基金Item Sponsored by National Natural Science Foundation of China (50575134 ,50835002,50975174)
文摘For the traditional one-step formulations of using shell elements, the computations of the curvature variation and bending stiffness matrix were simplified by omitting the rotational DOFs (degrees of freedom) on the basis of initial flat blank and fully known final configuration. They were highly efficient but not suitable either for the forming processes with non-flat initial configurations or for one-step forward and multistep analyses. Thus, a one-step formulation based on the rotation-free BST (Basic Shell Triangle) element was presented. In this formulation, the penalty method was adopted to deal with contacts in the forming processes.
基金supported in part by National Natural Science Foundation of China(NSFC No.11871038)supported in part by National Science Foundation Grant DMS-1620016.
文摘A conforming discontinuous Galerkinfinite element method was introduced by Ye and Zhang,on simplicial meshes and on polytopal meshes,which has theflexibility of using discontinuous approximation and an ultra simple formulation.The main goal of this paper is to improve the above discontinuous Galerkinfinite element method so that it can handle nonhomogeneous Dirichlet boundary conditions effectively.In addition,the method has been generalized in terms of approximation of the weak gradient.Error estimates of optimal order are established for the correspond-ing discontinuousfinite element approximation in both a discrete H1 norm and the L2 norm.Numerical results are presented to confirm the theory.