The problem of estimating high-dimensional Gaussian graphical models has gained much attention in recent years. Most existing methods can be considered as one-step approaches, being either regression-based or likeliho...The problem of estimating high-dimensional Gaussian graphical models has gained much attention in recent years. Most existing methods can be considered as one-step approaches, being either regression-based or likelihood-based. In this paper, we propose a two-step method for estimating the high-dimensional Gaussian graphical model. Specifically, the first step serves as a screening step, in which many entries of the concentration matrix are identified as zeros and thus removed from further consideration. Then in the second step, we focus on the remaining entries of the concentration matrix and perform selection and estimation for nonzero entries of the concentration matrix. Since the dimension of the parameter space is effectively reduced by the screening step,the estimation accuracy of the estimated concentration matrix can be potentially improved. We show that the proposed method enjoys desirable asymptotic properties. Numerical comparisons of the proposed method with several existing methods indicate that the proposed method works well. We also apply the proposed method to a breast cancer microarray data set and obtain some biologically meaningful results.展开更多
In this paper we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance m...In this paper we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decomposed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving innovation variances, which are modeled as linear functions of covariates. Then, we propose a penalized maximum likelihood method for variable selection in joint mean and covariance models based on this decomposition. Under certain regularity conditions, we establish the consistency and asymptotic normality of the penalized maximum likelihood estimators of parameters in the models. Simulation studies are undertaken to assess the finite sample performance of the proposed variable selection procedure.展开更多
基金National Natural Science Foundation of China (Grant No. 11671059)。
文摘The problem of estimating high-dimensional Gaussian graphical models has gained much attention in recent years. Most existing methods can be considered as one-step approaches, being either regression-based or likelihood-based. In this paper, we propose a two-step method for estimating the high-dimensional Gaussian graphical model. Specifically, the first step serves as a screening step, in which many entries of the concentration matrix are identified as zeros and thus removed from further consideration. Then in the second step, we focus on the remaining entries of the concentration matrix and perform selection and estimation for nonzero entries of the concentration matrix. Since the dimension of the parameter space is effectively reduced by the screening step,the estimation accuracy of the estimated concentration matrix can be potentially improved. We show that the proposed method enjoys desirable asymptotic properties. Numerical comparisons of the proposed method with several existing methods indicate that the proposed method works well. We also apply the proposed method to a breast cancer microarray data set and obtain some biologically meaningful results.
文摘In this paper we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decomposed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving innovation variances, which are modeled as linear functions of covariates. Then, we propose a penalized maximum likelihood method for variable selection in joint mean and covariance models based on this decomposition. Under certain regularity conditions, we establish the consistency and asymptotic normality of the penalized maximum likelihood estimators of parameters in the models. Simulation studies are undertaken to assess the finite sample performance of the proposed variable selection procedure.