One of the main challenges in the design and operation of catalytic reactors for reactions with multiple paths/steps is the occurrence of undesirable reactions and products. In these cases, two main factors need to be...One of the main challenges in the design and operation of catalytic reactors for reactions with multiple paths/steps is the occurrence of undesirable reactions and products. In these cases, two main factors need to be considered in the reactor performance: the “conversion” of the feed and the “selectivity” of the process, which is the conversion split between the desired and the undesired products. In this work, a comprehensive model is developed and used to assess the impact of pore-size distribution (PSD) on both conversion and selectivity in series catalytic reactions. In particular, the evaluation considers the effects of various combinations of micro- and macro-porosity, the potential advantages of radial variation of the porosity in the catalyst pellets, and the effect of pellet size. Results show that, for series reactions, when the formation of the desired product is followed by an undesirable degradation reaction, higher porosity in pellets, particularly in the micro-range, gives higher overall conversion, but lowers selectivity towards the formation of the desired product. Selectivity in these pellets can be improved by using a non-uniform PSD that provides a radial gradient of effective diffusivity in pellets increasing from the center to the outer pellet surface. The pellet size also has a significant effect, and larger pellets show lower selectivity in most cases. In general, conversion and selectivity trends move in opposite directions with changes in PSD and the pore structural properties of pellets. Therefore, finding the optimum design of pellets is an optimization process that requires process modeling. Consequently, selecting the best catalyst properties involves optimization, and the needed tool is a comprehensive mathematical model that takes into account the details of mass transport and reaction kinetics in the catalyst pellets. Our primary objective has been the development of a flexible mathematical model that would be applicable to a wide range of conditions and can be used as a 展开更多
文摘One of the main challenges in the design and operation of catalytic reactors for reactions with multiple paths/steps is the occurrence of undesirable reactions and products. In these cases, two main factors need to be considered in the reactor performance: the “conversion” of the feed and the “selectivity” of the process, which is the conversion split between the desired and the undesired products. In this work, a comprehensive model is developed and used to assess the impact of pore-size distribution (PSD) on both conversion and selectivity in series catalytic reactions. In particular, the evaluation considers the effects of various combinations of micro- and macro-porosity, the potential advantages of radial variation of the porosity in the catalyst pellets, and the effect of pellet size. Results show that, for series reactions, when the formation of the desired product is followed by an undesirable degradation reaction, higher porosity in pellets, particularly in the micro-range, gives higher overall conversion, but lowers selectivity towards the formation of the desired product. Selectivity in these pellets can be improved by using a non-uniform PSD that provides a radial gradient of effective diffusivity in pellets increasing from the center to the outer pellet surface. The pellet size also has a significant effect, and larger pellets show lower selectivity in most cases. In general, conversion and selectivity trends move in opposite directions with changes in PSD and the pore structural properties of pellets. Therefore, finding the optimum design of pellets is an optimization process that requires process modeling. Consequently, selecting the best catalyst properties involves optimization, and the needed tool is a comprehensive mathematical model that takes into account the details of mass transport and reaction kinetics in the catalyst pellets. Our primary objective has been the development of a flexible mathematical model that would be applicable to a wide range of conditions and can be used as a