Realizing the boron and iron separation through selective reduction and melting separation of boron-bearing iron con- centrate is of great significance for the utilization of crude ludwigite. The reduction and melting...Realizing the boron and iron separation through selective reduction and melting separation of boron-bearing iron con- centrate is of great significance for the utilization of crude ludwigite. The reduction and melting separation mechanism of boron-bearing iron concentrate/coal composite pellet was systematically investigated. The reduction and melting separation test of small size pellet was performed to reveal the evolution of slag and iron in the melting separation process. The isothermal reduction experiment showed the relationship between reduction stage and melting separation stage, and the step reduction and melting separation was perfectly achieved. Coal particles existed through the reduction and melting separation process and finally formed brown residue around the separated product. The pellet could not realize melting separation when the B2O3 content in the concentrate was lower than 6.00 wt%.展开更多
基金The authors would like to express their gratitude for the financial support of the China Postdoctoral Science Foundation (No. 2016M600919) and National Natural Science Foundation of China (No. 51274033).
文摘Realizing the boron and iron separation through selective reduction and melting separation of boron-bearing iron con- centrate is of great significance for the utilization of crude ludwigite. The reduction and melting separation mechanism of boron-bearing iron concentrate/coal composite pellet was systematically investigated. The reduction and melting separation test of small size pellet was performed to reveal the evolution of slag and iron in the melting separation process. The isothermal reduction experiment showed the relationship between reduction stage and melting separation stage, and the step reduction and melting separation was perfectly achieved. Coal particles existed through the reduction and melting separation process and finally formed brown residue around the separated product. The pellet could not realize melting separation when the B2O3 content in the concentrate was lower than 6.00 wt%.