Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geolo...Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geological media.The tests were conducted at a site in the northwestern part of Singapore composed of residual soil and granitic rock.The field test aims to provide measurement data to better understand the stress wave propagation in soil/rock and along their interface.Triaxial accelerometers were used for the free field vibration monitoring.The measured results are presented and discussed,and empirical formulae for predicting peak particle velocity (PPV) attenuation along the ground surface and in soil/rock were derived from the measured data.Also,the ground vibration attenuation across the soil-rock interface was carefully examined,and it was found that the PPV of ground vibration was decreased by 37.2% when it travels from rock to soil in the vertical direction.展开更多
The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of m...The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%.展开更多
基金supported by the Land and Liveability National Innovation Challenge under L2 NIC Award No. L2NICCFP1-2013-1
文摘Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geological media.The tests were conducted at a site in the northwestern part of Singapore composed of residual soil and granitic rock.The field test aims to provide measurement data to better understand the stress wave propagation in soil/rock and along their interface.Triaxial accelerometers were used for the free field vibration monitoring.The measured results are presented and discussed,and empirical formulae for predicting peak particle velocity (PPV) attenuation along the ground surface and in soil/rock were derived from the measured data.Also,the ground vibration attenuation across the soil-rock interface was carefully examined,and it was found that the PPV of ground vibration was decreased by 37.2% when it travels from rock to soil in the vertical direction.
文摘The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%.