MADS box proteins play an important role in floral development. To find genes involved in the floral transition of Prunus species, cDNAs for two MADS box genes, PpMADS1 and PpMADSIO, were cloned using degenerate prime...MADS box proteins play an important role in floral development. To find genes involved in the floral transition of Prunus species, cDNAs for two MADS box genes, PpMADS1 and PpMADSIO, were cloned using degenerate primers and 5'- and T-RACE based on the sequence database of P. persiea and P. duleis. The full length of PpMADS1 cDNA is 1,071 bp containing an open reading frame (ORF) of 717 bp and coding for a polypeptide of 238 amino acid residues. The full length of PpMADSIO cDNA is 937 bp containing an ORF of 633 bp and coding for a polypeptide of 210 amino acid residues. Sequence comparison revealed that PpMADS1 and PpMADSIO were highly homologous to genes API and PI in Arabidopsis, respectively. Phylogenetic analysis indicated that PpMADS1 belongs to the euAP1 clade of class A, and PpMADSIO is a member of GLO/PI clade of class B. RT-PCR analysis showed that PpMADS1 was expressed in sepal, petal, carpel, and fruit, which was slightly different from the expression pattern ofAPl; PpMADS10 was expressed in petal and stamen, which shared the same expression pattern as PI. Using selective mapping strategy, PpMADSI was assigned onto the Binl:50 on the G1 linkage group between the markers MCO44 and TSA2, and PpMADSIO onto the Bin1:73 on the same linkage group between the markers Lap- 1 and FGA8. Our results provided the basis for further dissection of the two MADS box gene function.展开更多
In this study, the genetic diversity of 51 cultivars in the primary core collection of peach (Prunus persica (L.) Batsch) was evaluated by using simple sequence repeats (SSRs). The phylogenetic relationships and...In this study, the genetic diversity of 51 cultivars in the primary core collection of peach (Prunus persica (L.) Batsch) was evaluated by using simple sequence repeats (SSRs). The phylogenetic relationships and the evolutionary history among different cultivars were determined on the basis of SSR data. Twenty-two polymorphic SSR primer pairs were selected, and a total of 111 alleles were identified in the 51 cultivars, with an average of 5 alleles per locus. According to traditional Chinese classification of peach cultivars, the 51 cultivars in the peach primary core collection belong to six variety groups. The SSR analysis revealed that the levels of the genetic diversity within each variety group were ranked as Sweet peach 〉 Crisp peach 〉 Flat peach 〉 Nectarine 〉 Honey Peach 〉 Yellow fleshed peach. The genetic diversity among the Chinese cultivars was higher than that among the introduced cultivars. Cluster analysis by the unweighted pair group method with arithmetic averaging (UPGMA) placed the 51 cultivars into five linkage clusters. Cultivar members from the same variety group were distributed in different UPGMA clusters and some members from different variety groups were placed under the same cluster. Different variety groups could not be differentiated in accordance with SSR markers. The SSR analysis revealed rich genetic diversity in the peach primary core collection, representative of genetic resources of peach.展开更多
基金supported by the National Natural Science Foundation of China(No.30500395)the National High Technology Research and Development Program(863 Projects)of China(No.2006AA10Z130 and 2006AA100108-3-7).
文摘MADS box proteins play an important role in floral development. To find genes involved in the floral transition of Prunus species, cDNAs for two MADS box genes, PpMADS1 and PpMADSIO, were cloned using degenerate primers and 5'- and T-RACE based on the sequence database of P. persiea and P. duleis. The full length of PpMADS1 cDNA is 1,071 bp containing an open reading frame (ORF) of 717 bp and coding for a polypeptide of 238 amino acid residues. The full length of PpMADSIO cDNA is 937 bp containing an ORF of 633 bp and coding for a polypeptide of 210 amino acid residues. Sequence comparison revealed that PpMADS1 and PpMADSIO were highly homologous to genes API and PI in Arabidopsis, respectively. Phylogenetic analysis indicated that PpMADS1 belongs to the euAP1 clade of class A, and PpMADSIO is a member of GLO/PI clade of class B. RT-PCR analysis showed that PpMADS1 was expressed in sepal, petal, carpel, and fruit, which was slightly different from the expression pattern ofAPl; PpMADS10 was expressed in petal and stamen, which shared the same expression pattern as PI. Using selective mapping strategy, PpMADSI was assigned onto the Binl:50 on the G1 linkage group between the markers MCO44 and TSA2, and PpMADSIO onto the Bin1:73 on the same linkage group between the markers Lap- 1 and FGA8. Our results provided the basis for further dissection of the two MADS box gene function.
基金Supported by Beijing Municipal Education Commission Urban Agriculture Disciplines Development Project (XK1001900553)Program for new Century Excellent Talents in University of China (NCET-06-0108).
文摘In this study, the genetic diversity of 51 cultivars in the primary core collection of peach (Prunus persica (L.) Batsch) was evaluated by using simple sequence repeats (SSRs). The phylogenetic relationships and the evolutionary history among different cultivars were determined on the basis of SSR data. Twenty-two polymorphic SSR primer pairs were selected, and a total of 111 alleles were identified in the 51 cultivars, with an average of 5 alleles per locus. According to traditional Chinese classification of peach cultivars, the 51 cultivars in the peach primary core collection belong to six variety groups. The SSR analysis revealed that the levels of the genetic diversity within each variety group were ranked as Sweet peach 〉 Crisp peach 〉 Flat peach 〉 Nectarine 〉 Honey Peach 〉 Yellow fleshed peach. The genetic diversity among the Chinese cultivars was higher than that among the introduced cultivars. Cluster analysis by the unweighted pair group method with arithmetic averaging (UPGMA) placed the 51 cultivars into five linkage clusters. Cultivar members from the same variety group were distributed in different UPGMA clusters and some members from different variety groups were placed under the same cluster. Different variety groups could not be differentiated in accordance with SSR markers. The SSR analysis revealed rich genetic diversity in the peach primary core collection, representative of genetic resources of peach.