Multifrequency superscattering is a phenomenon in which the scattering cross section from a subwavelength object simultaneously exceeds the single-channel limit at multiple frequency regimes.Here,we achieve simultaneo...Multifrequency superscattering is a phenomenon in which the scattering cross section from a subwavelength object simultaneously exceeds the single-channel limit at multiple frequency regimes.Here,we achieve simultaneously,within a graphene-coated subwavelength structure,multifrequency superscattering and superscattering shaping with different engineered scattering patterns.It is shown that multimode degenerate resonances at multiple frequency regimes appearing in a graphene composite structure due to the peculiar dispersion can be employed to resonantly overlap electric and magnetic multipoles of various orders,and,as a result,effective multifrequency superscattering with different engineered angular patterns can be obtained.Moreover,the phenomena of multifrequency superscattering have a high tolerance to material losses and some structural variations.Our work should anticipate extensive applications ranging from emission enhancing,energy harvesting,and antenna design with improved sensitivity and accuracy due to multifrequency operation.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11504306 and 92050102)Fujian Provincial Natural Science Foundation(No.2017J05015)。
文摘Multifrequency superscattering is a phenomenon in which the scattering cross section from a subwavelength object simultaneously exceeds the single-channel limit at multiple frequency regimes.Here,we achieve simultaneously,within a graphene-coated subwavelength structure,multifrequency superscattering and superscattering shaping with different engineered scattering patterns.It is shown that multimode degenerate resonances at multiple frequency regimes appearing in a graphene composite structure due to the peculiar dispersion can be employed to resonantly overlap electric and magnetic multipoles of various orders,and,as a result,effective multifrequency superscattering with different engineered angular patterns can be obtained.Moreover,the phenomena of multifrequency superscattering have a high tolerance to material losses and some structural variations.Our work should anticipate extensive applications ranging from emission enhancing,energy harvesting,and antenna design with improved sensitivity and accuracy due to multifrequency operation.