Ship bow wave breaking is a common phenomenon during navigation,involving complex multi-scale flow interactions.However,the understanding of this intense free surface flow issue is not sufficiently deep,especially reg...Ship bow wave breaking is a common phenomenon during navigation,involving complex multi-scale flow interactions.However,the understanding of this intense free surface flow issue is not sufficiently deep,especially regarding the lack of research on the impact of scale effects on bow wave breaking.This paper focuses on the benchmark ship model KCS and conducts numerical simulations and comparative analyses of bow wave breaking for three model scales under the condition of Fr=0.35.The numerical calculations were performed using the in-house computational fluid dynamics(CFD)solver naoe-FOAM-SJTU,which is developed on the open source platform OpenFOAM.Delayed detached eddy simulation(DDES)method is utilized to calculate the viscous flow field around the ship hull.The present method was validated through measurement data of wave profiles and wake flows obtained from model tests.Flow field results for three different scales,including bow wave profiles,vorticity at various sections,and wake distribution,were presented and analyzed.The results indicate that there is small difference in the bow wave overturning and breaking for the first two occurrences across different scales.However,considerable effects of scale are observed on the temporal and spatial variations of the free surface breaking pattern after the second overturning.The findings of this study can serve as valuable data references for the analysis of scale effects in ship bow wave breaking phenomena.展开更多
In this study, using the ECMWF reanalysis data, the possible linkage between the Pacific-North American teleconnection pattern (PNA) and the North Atlantic Oscillation (NAO) during boreal winter (December- Febru...In this study, using the ECMWF reanalysis data, the possible linkage between the Pacific-North American teleconnection pattern (PNA) and the North Atlantic Oscillation (NAO) during boreal winter (December- February) is investigated. The PNA and the NAO pattern are obtained by performing Rotated Empirical Orthogonal Function (REOF) analysis on an anomalous daily mean 300-hPa geopotential height field. The composite daily NAO indices show that the NAO indices are prone to be negative (positive) when the contemporary PNA indices are extremely positive (negative). The correlation coefficients between the daily PNA and NAO indices also confirm that, indeed, there is a significant anti-correlation between the PNA and NAO indices. The correlation peaks at a lag of 0 days (meaning contemporary correlation), and its value is 0.202. Analyses of a newly defined Rossby wave breaking index and diagnostics of the stream function tendency equation indicate that the anti-correlation between PNA and NAO may be caused by the anomalous Rossby wave breaking events associated with the PNA pattern.展开更多
Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is dis...Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.52131102).
文摘Ship bow wave breaking is a common phenomenon during navigation,involving complex multi-scale flow interactions.However,the understanding of this intense free surface flow issue is not sufficiently deep,especially regarding the lack of research on the impact of scale effects on bow wave breaking.This paper focuses on the benchmark ship model KCS and conducts numerical simulations and comparative analyses of bow wave breaking for three model scales under the condition of Fr=0.35.The numerical calculations were performed using the in-house computational fluid dynamics(CFD)solver naoe-FOAM-SJTU,which is developed on the open source platform OpenFOAM.Delayed detached eddy simulation(DDES)method is utilized to calculate the viscous flow field around the ship hull.The present method was validated through measurement data of wave profiles and wake flows obtained from model tests.Flow field results for three different scales,including bow wave profiles,vorticity at various sections,and wake distribution,were presented and analyzed.The results indicate that there is small difference in the bow wave overturning and breaking for the first two occurrences across different scales.However,considerable effects of scale are observed on the temporal and spatial variations of the free surface breaking pattern after the second overturning.The findings of this study can serve as valuable data references for the analysis of scale effects in ship bow wave breaking phenomena.
文摘In this study, using the ECMWF reanalysis data, the possible linkage between the Pacific-North American teleconnection pattern (PNA) and the North Atlantic Oscillation (NAO) during boreal winter (December- February) is investigated. The PNA and the NAO pattern are obtained by performing Rotated Empirical Orthogonal Function (REOF) analysis on an anomalous daily mean 300-hPa geopotential height field. The composite daily NAO indices show that the NAO indices are prone to be negative (positive) when the contemporary PNA indices are extremely positive (negative). The correlation coefficients between the daily PNA and NAO indices also confirm that, indeed, there is a significant anti-correlation between the PNA and NAO indices. The correlation peaks at a lag of 0 days (meaning contemporary correlation), and its value is 0.202. Analyses of a newly defined Rossby wave breaking index and diagnostics of the stream function tendency equation indicate that the anti-correlation between PNA and NAO may be caused by the anomalous Rossby wave breaking events associated with the PNA pattern.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41475074, 41775063 and 41475046)
文摘Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.