Due to the advantages of large workspace,low cost and the integrated vision/force sensing,robotic milling has become an important way for machining of complex parts.In recent years,many scholars have studied the probl...Due to the advantages of large workspace,low cost and the integrated vision/force sensing,robotic milling has become an important way for machining of complex parts.In recent years,many scholars have studied the problems existing in the applications of robotic milling,and lots of results have been made in the dynamics,pose planning,deformation control etc.,which provides theoretical guidance for high precision and high efficiency of robotic milling.From the perspective of complex parts robotic milling,this paper focuses on machining process planning and control techniques including the analysis of the robot-workspace,robot trajectory planning,vibration monitoring and control,deformation monitoring and compensation.As well as the principles of these technologies such as robot stiffness characteristics,dynamic characteristics,chatter mechanisms,and deformation mechanisms.The methods and characteristics related to the theory and technology of robotic milling of complex parts are summarized systematically.The latest research progress and achievements in the relevant fields are reviewed.It is hoped that the challenges,strategies and development related to robotic milling could be clarified through the carding work in this paper,so as to promote the application of related theories and technologies in high efficiency and precision intelligent milling with robot for complex parts.展开更多
基金supported by National Science Fund for Distinguished Young Scholars of China(No.51625502)Innovative Group Project of National Natural Science Foundation of China(No.51721092)Innovative Group Project of Hubei Province of China(No.2017CFA003)。
文摘Due to the advantages of large workspace,low cost and the integrated vision/force sensing,robotic milling has become an important way for machining of complex parts.In recent years,many scholars have studied the problems existing in the applications of robotic milling,and lots of results have been made in the dynamics,pose planning,deformation control etc.,which provides theoretical guidance for high precision and high efficiency of robotic milling.From the perspective of complex parts robotic milling,this paper focuses on machining process planning and control techniques including the analysis of the robot-workspace,robot trajectory planning,vibration monitoring and control,deformation monitoring and compensation.As well as the principles of these technologies such as robot stiffness characteristics,dynamic characteristics,chatter mechanisms,and deformation mechanisms.The methods and characteristics related to the theory and technology of robotic milling of complex parts are summarized systematically.The latest research progress and achievements in the relevant fields are reviewed.It is hoped that the challenges,strategies and development related to robotic milling could be clarified through the carding work in this paper,so as to promote the application of related theories and technologies in high efficiency and precision intelligent milling with robot for complex parts.