期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于粒子群神经网络模型反演玉米、小麦叶面积指数 被引量:4
1
作者 王枭轩 孟庆岩 +2 位作者 张海香 魏香琴 杨泽楠 《浙江农业学报》 CSCD 北大核心 2019年第7期1170-1176,共7页
基于高分1号遥感影像,分别采用粒子群神经网络模型、神经网络模型和植被指数回归模型3种方法,反演廊坊市玉米、小麦叶面积指数(LAI)。结果表明,粒子群神经网络模型反演玉米、小麦LAI的精度要高于其他方法,其模型的决定系数R2均高于0.9,... 基于高分1号遥感影像,分别采用粒子群神经网络模型、神经网络模型和植被指数回归模型3种方法,反演廊坊市玉米、小麦叶面积指数(LAI)。结果表明,粒子群神经网络模型反演玉米、小麦LAI的精度要高于其他方法,其模型的决定系数R2均高于0.9,均方根误差均低于0.196,可满足反演精度的要求。本研究提出的基于高分1号影像的粒子群神经网络模型反演玉米和小麦LAI的方法具有一定的普适性。 展开更多
关键词 叶面积指数 粒子群神经网络模型 神经网络模型 植被指数回归模型
下载PDF
基于PSO-BP神经网络的地下空间结构深基坑地表沉降预测研究
2
作者 莫永春 《江西建材》 2024年第1期104-107,共4页
文中以深圳市黄木岗大型地下空间综合交通枢纽为研究案例,开展了深基坑地表沉降预测研究。首先,收集140 d沉降数据,分析规律,评判安全状态;然后,利用140期监测数据分别构建传统BP和PSO-BP神经网络模型,结合未来10 d的基坑沉降量验证了... 文中以深圳市黄木岗大型地下空间综合交通枢纽为研究案例,开展了深基坑地表沉降预测研究。首先,收集140 d沉降数据,分析规律,评判安全状态;然后,利用140期监测数据分别构建传统BP和PSO-BP神经网络模型,结合未来10 d的基坑沉降量验证了模型的效果。结果表明,BP和PSO-BP神经网络预测模型均可满足施工要求,而PSO-BP神经网络模型的预测精度更高,可用于类似工程的地表沉降预测。 展开更多
关键词 深基坑 地表沉降 PSO-BP神经网络模型
下载PDF
BP-PSO在电加热炉中的温度智能预测 被引量:2
3
作者 王龙刚 侯媛彬 《自动化仪表》 CAS 北大核心 2013年第1期54-56,60,共4页
针对电加热炉难以建立精确模型的问题,提出采用BP神经网络与粒子群优化(PSO)相结合的算法对电加热炉的温度变化进行辨识,并建立系统模型。在建立系统模型的基础上,对温度变化趋势进行了预测。试验结果显示,与BP神经网络算法相比,粒子群... 针对电加热炉难以建立精确模型的问题,提出采用BP神经网络与粒子群优化(PSO)相结合的算法对电加热炉的温度变化进行辨识,并建立系统模型。在建立系统模型的基础上,对温度变化趋势进行了预测。试验结果显示,与BP神经网络算法相比,粒子群优化BP神经网络算法所得到的预测值有效时间范围延长了60%;在相同有效的预测时间内,预测值精度提高了43%。 展开更多
关键词 电加热炉 粒子群优化 BP神经网络 系统模型 预测精度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部