Accurate determination of the atmospheric particulate matter mass concentration and chemical composition is helpful in exploring the causes and sources of atmospheric enthalpy pollution and in evaluating the rationali...Accurate determination of the atmospheric particulate matter mass concentration and chemical composition is helpful in exploring the causes and sources of atmospheric enthalpy pollution and in evaluating the rationality of environmental air quality control strategies.Based on the sampling and chemical composition data of PM2.5 in different key regions of China in the CARE-China observation network,this research analyzes the environmental air quality data released by the China National Environmental Monitoring Centre during the studied period to determine the changes in the particulate matter mass concentration in key regions and the evolution of the corresponding chemical compositions during the implementation of the Action Plan for Prevention and Control of Air Pollution from 2013-2017.The results show the following.(1)The particulate matter mass concentration in China showed a significant downward trend;however,the PM2.5 annual mass concentration in 64%of cities exceeds the New Chinese Ambient Air Quality Standard(CAAQS)GradeⅡ(GB3095-2012).The region to the east of the Taihang Mountains,the Fenhe and Weihe River Plain and the Urumqi-Changji regions in Xinjiang,all have PM2.5 concentration loading that is still high,and heavy haze pollution occurred frequently in the autumn and winter.(2)During the heavy pollution in the autumn and winter,the concentrations of sulfate and organic components decreased significantly.The mean SO42-concentration in PM2.5 decreased by 76%,12%,81%and 38%in Beijing-Tianjin-Hebei(BTH),the Pearl River Delta(PRD),the Sichuan-Chongqing region(SC)and the Fenhe and Weihe River Plain,respectively.The mean organic matter(OM)concentration decreased by 70%,44%,48%and 31%,respectively,and the mean concentration of NH4+decreased by 68%,1.6%,38%and 25%,respectively.The mean elemental carbon(EC)concentration decreased by 84%and 20%in BTH and SC,respectively,and it increased by 61%and 11%in the PRD and Fenhe and Weihe River Plain,respectively.The mean concentration of mineral and unresolved chemica展开更多
基金supported by the Ministry of Science and Technology National Key Research and Development Program (Grant No. 2017YFC0210000)the Fundamental Heavy Pollution Cause and Governance Research Project (Grant No. DQGG0101)the Beijing Municipal Science and Technology Commission Capital Blue Sky Action and Cultivation Project (Grant No. Z181100005418014)
文摘Accurate determination of the atmospheric particulate matter mass concentration and chemical composition is helpful in exploring the causes and sources of atmospheric enthalpy pollution and in evaluating the rationality of environmental air quality control strategies.Based on the sampling and chemical composition data of PM2.5 in different key regions of China in the CARE-China observation network,this research analyzes the environmental air quality data released by the China National Environmental Monitoring Centre during the studied period to determine the changes in the particulate matter mass concentration in key regions and the evolution of the corresponding chemical compositions during the implementation of the Action Plan for Prevention and Control of Air Pollution from 2013-2017.The results show the following.(1)The particulate matter mass concentration in China showed a significant downward trend;however,the PM2.5 annual mass concentration in 64%of cities exceeds the New Chinese Ambient Air Quality Standard(CAAQS)GradeⅡ(GB3095-2012).The region to the east of the Taihang Mountains,the Fenhe and Weihe River Plain and the Urumqi-Changji regions in Xinjiang,all have PM2.5 concentration loading that is still high,and heavy haze pollution occurred frequently in the autumn and winter.(2)During the heavy pollution in the autumn and winter,the concentrations of sulfate and organic components decreased significantly.The mean SO42-concentration in PM2.5 decreased by 76%,12%,81%and 38%in Beijing-Tianjin-Hebei(BTH),the Pearl River Delta(PRD),the Sichuan-Chongqing region(SC)and the Fenhe and Weihe River Plain,respectively.The mean organic matter(OM)concentration decreased by 70%,44%,48%and 31%,respectively,and the mean concentration of NH4+decreased by 68%,1.6%,38%and 25%,respectively.The mean elemental carbon(EC)concentration decreased by 84%and 20%in BTH and SC,respectively,and it increased by 61%and 11%in the PRD and Fenhe and Weihe River Plain,respectively.The mean concentration of mineral and unresolved chemica