With the intermediate flow states predicted by local two phase Riemann problem,the modified ghost fluid method(MGFM)and its variant(r GFM)have been widely employed to resolve the interface condition in the simulation ...With the intermediate flow states predicted by local two phase Riemann problem,the modified ghost fluid method(MGFM)and its variant(r GFM)have been widely employed to resolve the interface condition in the simulation of compressible multi-medium flows.In this work,the drawback of the construction procedure of local two phase Riemann problem in r GFM was investigated in detail,and a refined version of the construction procedure was specially developed to make the simulation of underwater explosion bubbles more accurate and robust.Beside the refined r GFM,the fast and accurate particle level set method was also adopted to achieve a more effective and computationally efficient capture of the evolving multi-medium interfaces during the simulation.To demonstrate the improvement brought by current refinement,several typical numerical examples of underwater explosion bubbles were performed with original r GFM and refined r GFM,respectively.The results indicate that,when compared with original r GFM,numerical oscillations were effectively removed with the proposed refinement.Accordingly,with present refined treatment of interface condition,a more accurate and robust simulation of underwater explosion bubbles was accomplished in this work.展开更多
In this paper, we give an up-to-date survey on physically-based fluid animation research. As one of the most popular approaches to simulate realistic fluid effects, physically-based fluid animation has spurred a large...In this paper, we give an up-to-date survey on physically-based fluid animation research. As one of the most popular approaches to simulate realistic fluid effects, physically-based fluid animation has spurred a large number of new results in recent years. We classify and discuss the existing methods within three categories: Lagrangian method, Eulerian method and Lattice-Boltzmann method. We then introduce techniques for seven different kinds of special fluid effects. Finally we review the latest hot research areas and point out some future research trends, including surface tracking, fluid control, hybrid method, model reduction, etc.展开更多
This paper presents a comparative study of a meshless level-set method in the simulation of sloshing flows. The numerical moving particle semi-implicit (MPS) method and a grid based schemes of the MPS and level-set ...This paper presents a comparative study of a meshless level-set method in the simulation of sloshing flows. The numerical moving particle semi-implicit (MPS) method and a grid based schemes of the MPS and level-set methods are outlined and two violent sloshing cases are considered. The computed results are compared with the corresponding experimental data for validation. The impact pressure and the deformations of free surface induced by sloshing are comparatively analyzed, and are in good agreement with experimental ones. Results show that both the MPS and level-set methods are good tools for simulation of violent sloshing flows. However, the second pressure peaks as well as breaking and splashing of free surface by the MPS method are captured better than by the level-set method.展开更多
A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interfac...A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.041322062 and 51075004)the Foundation of Zhejiang Educational Committee(Grant No.529003+G21144)
文摘With the intermediate flow states predicted by local two phase Riemann problem,the modified ghost fluid method(MGFM)and its variant(r GFM)have been widely employed to resolve the interface condition in the simulation of compressible multi-medium flows.In this work,the drawback of the construction procedure of local two phase Riemann problem in r GFM was investigated in detail,and a refined version of the construction procedure was specially developed to make the simulation of underwater explosion bubbles more accurate and robust.Beside the refined r GFM,the fast and accurate particle level set method was also adopted to achieve a more effective and computationally efficient capture of the evolving multi-medium interfaces during the simulation.To demonstrate the improvement brought by current refinement,several typical numerical examples of underwater explosion bubbles were performed with original r GFM and refined r GFM,respectively.The results indicate that,when compared with original r GFM,numerical oscillations were effectively removed with the proposed refinement.Accordingly,with present refined treatment of interface condition,a more accurate and robust simulation of underwater explosion bubbles was accomplished in this work.
基金Supported partially by the National Basic Research Program of China (Grant No. 2009CB320804)the National High-Tech Research & Development Program of China (Grant No. 2006AA01Z307)
文摘In this paper, we give an up-to-date survey on physically-based fluid animation research. As one of the most popular approaches to simulate realistic fluid effects, physically-based fluid animation has spurred a large number of new results in recent years. We classify and discuss the existing methods within three categories: Lagrangian method, Eulerian method and Lattice-Boltzmann method. We then introduce techniques for seven different kinds of special fluid effects. Finally we review the latest hot research areas and point out some future research trends, including surface tracking, fluid control, hybrid method, model reduction, etc.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379125,51411130131 and 11272120)the National Key Basic Research Development of China(973 Program,Grant No.2013CB036103)+1 种基金the High Te-chnology of Marine Research Project of the Ministry of Indu-stry and the Information Technology of Chinathe Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(Grant No.2013022)
文摘This paper presents a comparative study of a meshless level-set method in the simulation of sloshing flows. The numerical moving particle semi-implicit (MPS) method and a grid based schemes of the MPS and level-set methods are outlined and two violent sloshing cases are considered. The computed results are compared with the corresponding experimental data for validation. The impact pressure and the deformations of free surface induced by sloshing are comparatively analyzed, and are in good agreement with experimental ones. Results show that both the MPS and level-set methods are good tools for simulation of violent sloshing flows. However, the second pressure peaks as well as breaking and splashing of free surface by the MPS method are captured better than by the level-set method.
基金The Innovative Research Groups of the National Natural Science Foundation of China under contract No.51021004the National Natural Science Foundation for Youth of China under contract No. 51109018+2 种基金the Open Foundation of Water & Sediment Science and Water Hazard Prevention Hunan Provincial Key Laboratory under contract No. 2011SS05the Open Foundation of Port,Coastal and offshore Engineering Hunan Provincial Key Discipline under contract No. 20110815001the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety under contract No.HSSKLTJU-201208.
文摘A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.
文摘研究了耦合Level Set(LS)方法处理介质界面算法,通过对比旋转流场和剪切流场下的界面捕捉情况,给出了各种不同方法在处理介质界面过程中的优缺点,分析了产生这种现象的原因。通过对比分析得到,耦合粒子Level Set(Particle Level Set,PLS)方法以及耦合Level Set和VOF(Coupled Level Set and Volume of Fluid,CLSVOF)方法相比于单纯的LS方法,在流体守恒性质方面有很大的提高,PLS方法可以根据撒播粒子和精确追踪示踪粒子修正LS界面;而CLSVOF方法可以通过重构界面和体积输运,重新初始化LS函数。在实际物理应用中,PLS方法多次重新撒播示踪粒子会降低界面精度,且对每个示踪粒子的追踪需要加大CPU内存,而CLSVOF方法更加高效和合理。