The inner flow analysis of centrifugal pumps has gradually become an important issue for the hydraulic design and performance improvement.Nowadays,CFD simulation toolbox of pump inner flow mainly contains commercial t...The inner flow analysis of centrifugal pumps has gradually become an important issue for the hydraulic design and performance improvement.Nowadays,CFD simulation toolbox of pump inner flow mainly contains commercial tools and open source tools.There are some defects for commercial CFD software for the numerical simulation of 3-D turbulent internal flow in pump,especially in capturing the flow characteristics under the off-design operating conditions.Additionally,it is difficult for researchers to do further investigation because of the undeclared source.Therefore,an open source software like Open Field Operation and Manipulation (OpenFOAM) is increasingly popular with researchers from all over the world.In this paper,a new computational study was implemented based on the original solver and was used to directly simulate the steady-state inner flow in a double blades pump,with the specific speed is 111.In order to disclose the characteristics deeply,three research schemes were conducted.The ratios () of the flow rate are 0.8,1.0 and 1.2,respectively.The simulation results were verified with the Particle Imaging Velocimetry (PIV) experimental results,and the numerical calculation results agree well with the experimental data.Meanwhile,the phenomena of flow separation under the off-design operating conditions are well captured by OpenFOAM.The results indicate that OpenFOAM possesses obvious strong predominance in computing the internal flow field of pump.The analysis results can also be used as the basis for the further research and the improvement of centrifugal pump.展开更多
Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-struct...Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-structure of various clusters were captured. After the boundary of clusters was determined by the gray level threshold method, clusters were classified by the distance between particles and the shape and position of clusters. In addition, the process of clusters forming and breaking up was described, and the sizes of clusters were also obtained. With the Minimum Quadric Difference (MQD) cross-correlation algorithm suitable for high-density particles, the axial velocities of the particles were obtained in the dilute phase section. The features of particle motion were revealed by investigating statistically the magnitude and distribution of particle axial velocity in the radial direction. At most radial cross-sections, there exists a parabola-shaped distribution of upward axial velocity of particles, namely, the magnitude of axial velocity in the core region is higher than that near the wall region of the riser.展开更多
This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Techno...This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Technology, the Netherlands. In this experiment, in an attempt to reduce the errors of measurement and improve its accuracy in high-speed flight, some nonintrusive meas- urement techniques, such as the quantitative infrared thermography (IRT), the digital particle imaging velocimetry (PIV), and the s...展开更多
具有超高亮度、超短脉冲、全相干特性的X射线自由电子激光(X-ray Free Electron Lasers,XFELs)的出现为超快时间研究与超微结构探索带来新的机遇,使得获取单分子、单颗粒原子分辨率图像及电影成为可能。随着德国FLASH、意大利FERMI、...具有超高亮度、超短脉冲、全相干特性的X射线自由电子激光(X-ray Free Electron Lasers,XFELs)的出现为超快时间研究与超微结构探索带来新的机遇,使得获取单分子、单颗粒原子分辨率图像及电影成为可能。随着德国FLASH、意大利FERMI、美国LCLS以及日本SACLA等装置的建成与投入使用,X射线自由电子激光已经进入了快速发展的阶段,一系列物理、化学、生物、材料科学领域的前沿研究成果不断涌现。为突破实验技术、工程设备及软件算法上的技术壁垒,相关科研机构通过国际合作,拟实现纳米颗粒、细菌、细胞、病毒、团簇及生物学大分子等单颗粒的原子分辨率成像。文章将聚焦单颗粒成像的发展历史、科学意义、研究背景、研究目标、研究规划、研究现状及世界各国的布局,并展望单颗粒成像未来的发展。展开更多
基金Project supported by the National Natural Science Funds for Distinguished Young Scholar (Grant No.50825902)the National Natural Science Foundation of China (Grant Nos.51079062,51179075 and 51109095)the Natural Science Foundation of Jiangsu Province (Grant Nos.BK2009006,BK2010346)
文摘The inner flow analysis of centrifugal pumps has gradually become an important issue for the hydraulic design and performance improvement.Nowadays,CFD simulation toolbox of pump inner flow mainly contains commercial tools and open source tools.There are some defects for commercial CFD software for the numerical simulation of 3-D turbulent internal flow in pump,especially in capturing the flow characteristics under the off-design operating conditions.Additionally,it is difficult for researchers to do further investigation because of the undeclared source.Therefore,an open source software like Open Field Operation and Manipulation (OpenFOAM) is increasingly popular with researchers from all over the world.In this paper,a new computational study was implemented based on the original solver and was used to directly simulate the steady-state inner flow in a double blades pump,with the specific speed is 111.In order to disclose the characteristics deeply,three research schemes were conducted.The ratios () of the flow rate are 0.8,1.0 and 1.2,respectively.The simulation results were verified with the Particle Imaging Velocimetry (PIV) experimental results,and the numerical calculation results agree well with the experimental data.Meanwhile,the phenomena of flow separation under the off-design operating conditions are well captured by OpenFOAM.The results indicate that OpenFOAM possesses obvious strong predominance in computing the internal flow field of pump.The analysis results can also be used as the basis for the further research and the improvement of centrifugal pump.
文摘Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-structure of various clusters were captured. After the boundary of clusters was determined by the gray level threshold method, clusters were classified by the distance between particles and the shape and position of clusters. In addition, the process of clusters forming and breaking up was described, and the sizes of clusters were also obtained. With the Minimum Quadric Difference (MQD) cross-correlation algorithm suitable for high-density particles, the axial velocities of the particles were obtained in the dilute phase section. The features of particle motion were revealed by investigating statistically the magnitude and distribution of particle axial velocity in the radial direction. At most radial cross-sections, there exists a parabola-shaped distribution of upward axial velocity of particles, namely, the magnitude of axial velocity in the core region is higher than that near the wall region of the riser.
文摘This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Technology, the Netherlands. In this experiment, in an attempt to reduce the errors of measurement and improve its accuracy in high-speed flight, some nonintrusive meas- urement techniques, such as the quantitative infrared thermography (IRT), the digital particle imaging velocimetry (PIV), and the s...
文摘具有超高亮度、超短脉冲、全相干特性的X射线自由电子激光(X-ray Free Electron Lasers,XFELs)的出现为超快时间研究与超微结构探索带来新的机遇,使得获取单分子、单颗粒原子分辨率图像及电影成为可能。随着德国FLASH、意大利FERMI、美国LCLS以及日本SACLA等装置的建成与投入使用,X射线自由电子激光已经进入了快速发展的阶段,一系列物理、化学、生物、材料科学领域的前沿研究成果不断涌现。为突破实验技术、工程设备及软件算法上的技术壁垒,相关科研机构通过国际合作,拟实现纳米颗粒、细菌、细胞、病毒、团簇及生物学大分子等单颗粒的原子分辨率成像。文章将聚焦单颗粒成像的发展历史、科学意义、研究背景、研究目标、研究规划、研究现状及世界各国的布局,并展望单颗粒成像未来的发展。