An experimental model was set up to investigate the formation and evolution of the free surface vortex. A Particle Image Velocimetry (PIV) was used to measure the free surface vortex flow field at different developm...An experimental model was set up to investigate the formation and evolution of the free surface vortex. A Particle Image Velocimetry (PIV) was used to measure the free surface vortex flow field at different development stages. Flow visualization was used to locate the vortex position and find its structure. Empirical formulas about the critical submergence and the whole field structure were obtained. It is found that the tangential velocity distribution is similar to that of the Rankine vortex and the radial velocity changes little in the vortex functional scope. Vortex starts from the free surface and gradually intensifies to air entrainment vortex. The vortex core moves during the formation and evolution of the free surface vortex. Based on the experimental model, the vortex position and structure were predicted by numerical simulation combined with a vortex model and compared with that of the experiments, which shows satisfactory agreement.展开更多
Particle Image Velocimetry (PIV) technique was employed to study experimentally gas-liquid two-phase flow in an aeration tank. In terms of the PIV principles, an algorithm of PIV based on the Fast Fourier Transforma...Particle Image Velocimetry (PIV) technique was employed to study experimentally gas-liquid two-phase flow in an aeration tank. In terms of the PIV principles, an algorithm of PIV based on the Fast Fourier Transformation (FFT) was worked out. The PIV program was developed and verified, and then was used to measure three kinds of states in the testing device. The program was also used to calculate and analyze the related parameters. The experimental data indicate that the bubbles in testing device have the longest resident time and stronger turbulent intensity for the gas-liquid two-phase flow in a special case (Case 3), resulting in great increase of the oxygen transferring speed and efficiency, whereby providing the basis for the selection design of aeration tank.展开更多
The present article reports the experimental Particle Image Velocimetry (PIV) investigation and the corresponding numerical simulation results about the water flow over the oscillating hydrofoil and its unsteady dyn...The present article reports the experimental Particle Image Velocimetry (PIV) investigation and the corresponding numerical simulation results about the water flow over the oscillating hydrofoil and its unsteady dynamic characters. The experimental study focuses on the effect of mean angles of attack. The comparison between the PIV results and numerical prediction about the flow field using Fluent well demonstrates the capability of CFD on the simulation of the water flow around the pitching hydrofoil. The numerical results indicate that the forced oscillating frequencies have evident effects on the flow separation and vortex shedding. The simulations about the hydrodynamic drag and lift coefficients were also performed.展开更多
基金the National Natural Science Foundation of China (Grant No. 10772108)the ShanghaiLeading Academic Discipline Project (Grant No. Y0103)
文摘An experimental model was set up to investigate the formation and evolution of the free surface vortex. A Particle Image Velocimetry (PIV) was used to measure the free surface vortex flow field at different development stages. Flow visualization was used to locate the vortex position and find its structure. Empirical formulas about the critical submergence and the whole field structure were obtained. It is found that the tangential velocity distribution is similar to that of the Rankine vortex and the radial velocity changes little in the vortex functional scope. Vortex starts from the free surface and gradually intensifies to air entrainment vortex. The vortex core moves during the formation and evolution of the free surface vortex. Based on the experimental model, the vortex position and structure were predicted by numerical simulation combined with a vortex model and compared with that of the experiments, which shows satisfactory agreement.
基金the National Natural Science Foundation of China (Grant No. 50679071)the China Postdoctoral Science Foundation (Grant No. 20070410378).
文摘Particle Image Velocimetry (PIV) technique was employed to study experimentally gas-liquid two-phase flow in an aeration tank. In terms of the PIV principles, an algorithm of PIV based on the Fast Fourier Transformation (FFT) was worked out. The PIV program was developed and verified, and then was used to measure three kinds of states in the testing device. The program was also used to calculate and analyze the related parameters. The experimental data indicate that the bubbles in testing device have the longest resident time and stronger turbulent intensity for the gas-liquid two-phase flow in a special case (Case 3), resulting in great increase of the oxygen transferring speed and efficiency, whereby providing the basis for the selection design of aeration tank.
基金the Underwater Vehicle Research Center of Korea (Grant No. SM-42)
文摘The present article reports the experimental Particle Image Velocimetry (PIV) investigation and the corresponding numerical simulation results about the water flow over the oscillating hydrofoil and its unsteady dynamic characters. The experimental study focuses on the effect of mean angles of attack. The comparison between the PIV results and numerical prediction about the flow field using Fluent well demonstrates the capability of CFD on the simulation of the water flow around the pitching hydrofoil. The numerical results indicate that the forced oscillating frequencies have evident effects on the flow separation and vortex shedding. The simulations about the hydrodynamic drag and lift coefficients were also performed.