Thermal stress is an important reason of coal particle primary fragmentation,during which the role of pore structure is ambiguous.Thermal stress induced fragmentation experiments were conducted with low volatile coal/...Thermal stress is an important reason of coal particle primary fragmentation,during which the role of pore structure is ambiguous.Thermal stress induced fragmentation experiments were conducted with low volatile coal/char particles,and the results show that the fragmentation severity enhances with increasing porosity.Various porous thermal stress models were developed with finite element method,and the influences of the pore shape,size,position and porosity on the thermal stress were discussed.The maximum thermal stress inside particle increases with pore curvature,the pore position affects the thermal stress more significantly at the particle center and surface.The expectation of the maximum tensile thermal stress linearly increases with porosity,making the particles with higher porosity easier to fragment,contrary to the conclusion deduced from the devolatilization theory.The obtained results are valuable for the analysis of different thermal processes concerning the thermal stresses of the solid feedstocks.展开更多
Research on coal fragmentation can play an important role in understanding coal and gas outbursts.The study discussed in this paper explored the fragmentation of gas-containing coal particles using the drop-weight imp...Research on coal fragmentation can play an important role in understanding coal and gas outbursts.The study discussed in this paper explored the fragmentation of gas-containing coal particles using the drop-weight impact method.The effects of equilibrium gas pressures and type of adsorbate gas on particle size distributions and fragmentation energy were investigated in detail.We found that the Fractal particle size distribution model can most effectively describe the crushed coal particle sizes.The equilibrium pressure and type of gas can influence the Fractal distribution parameter.The crushing energy is composed of energy to create new surfaces and other forms of energy that are dissipated but the equilibrium gas pressure and type of adsorption gas can affect energy consumption and crushing efficiency.This research will be of guiding significance to the intensity evaluation and mechanism understanding of coal and gas outbursts.展开更多
Fragmentation behaviour of coal particles subjected to detonation wave is being studied. Detonation wave is initiated by a plasma cartridge at one end of a detonation tube. Coal particles are subjected to a shock whos...Fragmentation behaviour of coal particles subjected to detonation wave is being studied. Detonation wave is initiated by a plasma cartridge at one end of a detonation tube. Coal particles are subjected to a shock whose temperature depends on the Mach number of the detonation wave. Temperature shock is found to generate thermal stresses which may fragment the coal particles. A non-dimensional mathematical model for the heat transfer process in the coal particle is proposed. Thermal stresses are calculated at various times and radii while maximum strain energy theory is used to understand the failure behavior viz., the time, temperature and location of fracture. A physical model for coal particle fragmentation when subjected to detonation wave is also proposed. The study suggests that detonation combustion of coal is qualitatively different from conventional method.展开更多
基金supported by National Natural Science Foundation of China(grant No.21908150)China Postdoctoral Science Foundation(grant No.2019M653404)+1 种基金the Key Research&Development Program of Sichuan Province,China(grant No.22zDYF 1839)Sichuan University Post-Doctoral Interdisciplinary Innovation Initial Funding.
文摘Thermal stress is an important reason of coal particle primary fragmentation,during which the role of pore structure is ambiguous.Thermal stress induced fragmentation experiments were conducted with low volatile coal/char particles,and the results show that the fragmentation severity enhances with increasing porosity.Various porous thermal stress models were developed with finite element method,and the influences of the pore shape,size,position and porosity on the thermal stress were discussed.The maximum thermal stress inside particle increases with pore curvature,the pore position affects the thermal stress more significantly at the particle center and surface.The expectation of the maximum tensile thermal stress linearly increases with porosity,making the particles with higher porosity easier to fragment,contrary to the conclusion deduced from the devolatilization theory.The obtained results are valuable for the analysis of different thermal processes concerning the thermal stresses of the solid feedstocks.
基金support from the Science and Technology Foundation of Guizhou Province(No.[2017]2815)the Fundamental Research Funds for the Central Universities(No.2020YJSAQ05)the National Natural Science Foundation of China(Nos.51274206,51404277)。
文摘Research on coal fragmentation can play an important role in understanding coal and gas outbursts.The study discussed in this paper explored the fragmentation of gas-containing coal particles using the drop-weight impact method.The effects of equilibrium gas pressures and type of adsorbate gas on particle size distributions and fragmentation energy were investigated in detail.We found that the Fractal particle size distribution model can most effectively describe the crushed coal particle sizes.The equilibrium pressure and type of gas can influence the Fractal distribution parameter.The crushing energy is composed of energy to create new surfaces and other forms of energy that are dissipated but the equilibrium gas pressure and type of adsorption gas can affect energy consumption and crushing efficiency.This research will be of guiding significance to the intensity evaluation and mechanism understanding of coal and gas outbursts.
文摘Fragmentation behaviour of coal particles subjected to detonation wave is being studied. Detonation wave is initiated by a plasma cartridge at one end of a detonation tube. Coal particles are subjected to a shock whose temperature depends on the Mach number of the detonation wave. Temperature shock is found to generate thermal stresses which may fragment the coal particles. A non-dimensional mathematical model for the heat transfer process in the coal particle is proposed. Thermal stresses are calculated at various times and radii while maximum strain energy theory is used to understand the failure behavior viz., the time, temperature and location of fracture. A physical model for coal particle fragmentation when subjected to detonation wave is also proposed. The study suggests that detonation combustion of coal is qualitatively different from conventional method.