As a popular meshfree particle method,the smoothed particle hydrodynamics(SPH) has suffered from not being able to di-rectly implement the solid boundary conditions.This influences the SPH approximation accuracy and h...As a popular meshfree particle method,the smoothed particle hydrodynamics(SPH) has suffered from not being able to di-rectly implement the solid boundary conditions.This influences the SPH approximation accuracy and hinders its further de-velopment and application to engineering and scientific problems.In this paper,a coupled dynamic solid boundary treatment(SBT) algorithm has been proposed,after investigating the features of existing SPH SBT algorithms.The novelty of the cou-pled dynamic SBT algorithm includes a new repulsive force between approaching fluid and solid particles,and a new numeri-cal approximation scheme for estimating field functions of virtual solid particles.The new SBT algorithm has been examined with three numerical examples including a typical dam-break flow,a dam-break flow with a sharp-edged obstacle,and a water entry problem.It is demonstrated that SPH with this coupled dynamic boundary algorithm can lead to accurate results with smooth pressure field,and that the new SBT algorithm is also suitable for complex and even moving solid boundaries.展开更多
Effects of hot extrusion (HEX) and heat treatment on prior particle boundary (PPB), MC carbides,γ′precipitates and grain size of nickel-base FGH96 superalloy were studied. The results show that PPB consists of larg...Effects of hot extrusion (HEX) and heat treatment on prior particle boundary (PPB), MC carbides,γ′precipitates and grain size of nickel-base FGH96 superalloy were studied. The results show that PPB consists of largeγ′, MC carbides enriched with Ti, Nb and a modicum of oxides. Thereafter, it can efficaciously tune γ′ precipitate size from micrometer down to nanometer region and simultaneously results in the annihilation of PPB by HEX process. The activation energy for grain growth of as-HEXed FGH96 superalloy was measured to be 402.6 kJ/mol, indicating that γ′ precipitate serves the critical role in inhibiting grain growth under sub-solvus heat treatment. Moreover, the results reveal that grain growth is primarily restrained by MC carbide in the case of super-solvus temperature.展开更多
The fiuidization behavior of Geldart A particles in a gas-solid micro-fluidized bed was investigated by Eulerian-Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation sh...The fiuidization behavior of Geldart A particles in a gas-solid micro-fluidized bed was investigated by Eulerian-Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation showed that the predicted minimum bubbling velocities were significantly lower than the experimental data even when an extremely fine grid size (of approximately one particle diameter) was used. The modified Gibilaro drag model was therefore tested next. The predicted minimum bubbling velocity and bed voidage were in reasonable agreement with the experimental data available in literature. The experimentally observed regime transition phenomena from bubbling to slugging were also reproduced successfully in the simulations. Parametric studies indicated that the solid-wall boundary conditions had a significant impact on the predicted gas and solid flow behavior.展开更多
The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swar...The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swarm is better represented. In this paper,the cell model and its development were reviewed, and themodifications of outer cell boundary conditions were suggested. Atthe cell outer boundary, the restriction of uniform liquid flow wasremoved in our simulation conducted in the reference frame fixed withthe particle.展开更多
Smoothed Particle Hydrodynamics method (SPFI) has a good adaptability for simulating of free surface flow problems. However, there are some shortcomings of SPH which are still in open discussion. This paper presents...Smoothed Particle Hydrodynamics method (SPFI) has a good adaptability for simulating of free surface flow problems. However, there are some shortcomings of SPH which are still in open discussion. This paper presents a corrected solid boundary handling method for weakly compressible SPH. This improved method is very helpful for numerical stability and pressure distribution. Compared with other solid boundary handling methods, this corrected method is simpler for virtual ghost particle interpolation and the ghost particle evaluation relationship is clearer. Several numerical tests are given, like dam breaking, solitary wave impact and sloshing tank waves. The results show that the corrected solid boundary processing method can recover the spurious oscillations of pressure distribution when simulating the problems with complex geometry boundary.展开更多
As ore grades constantly decline,more copper tailings,which still contain a considerable amount of unrecovered copper,are expected to be produced as a byproduct of froth flotation.This research reveals the occurrence ...As ore grades constantly decline,more copper tailings,which still contain a considerable amount of unrecovered copper,are expected to be produced as a byproduct of froth flotation.This research reveals the occurrence mechanism of copper minerals in typical copper sulfide tailings using quantitative mineral liberation analysis(MLA)integrated with scanning electron microscopy–energy dispersive spectroscopy(SEM–EDS).A comprehensive mineralogical characterization was carried out,and the results showed that almost all copper minerals were highly disseminated within coarse gangue particles,except for 9.2wt%chalcopyrite that occurred in the 160–180μm size fraction.The predominant copper-bearing mineral was chalcopyrite,which was closely intergrown with orthoclase and muscovite rather than quartz.The flotation tailings sample still contained 3.28wt%liberated chalcopyrite and 3.13wt%liberated bornite because of their extremely fine granularity.The SEM–EDS analysis further demonstrated that copper minerals mainly occurred as fine dispersed and fully enclosed structures in gangue minerals.The information obtained from this research could offer useful references for recovering residual copper from flotation tailings.展开更多
Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate parti...Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level.展开更多
The present paper presents an experimental and numerical investigation of the dispersion of the gaseous jet flow and co-flow for the simple unit cell(SUC)and body-centred cubic(BCC)configuration of particles in packed...The present paper presents an experimental and numerical investigation of the dispersion of the gaseous jet flow and co-flow for the simple unit cell(SUC)and body-centred cubic(BCC)configuration of particles in packed beds.The experimental setup is built in such a way that suitable and simplified boundary conditions are imposed for the corresponding numerical framework,so the simulations can be done under very similar conditions as the experiments.Accordingly,a porous plate is used for the co-flow to achieve the uniform velocity and the fully developed flow is ensured for the jet flow.The SUC and BCC particle beds consist of 3D-printed spheres,and the non-isotropy near the walls is mostly eliminated by placing half-spheres at the channel walls.The flow velocities are analysed directly at the exit of the particle bed for both beds over 36 pores for the SUC configuration and 60 pores for the BCC configuration,for particle Reynolds numbers of 200,300,and 400.Stereo particle image velocimetry is experimentally arranged in such a way that the velocities over the entire region at the exit of the packed bed are obtained instantaneously.The numerical method consists of a state-of-the-art immersed boundary method with adaptive mesh refinement.The paper presents the pore jet structure and velocity field exiting from each pore for the SUC and BCC packed particle beds.The numerical and experimental studies show a good agreement for the SUC configuration for all flow velocities.For the BCC configuration,some differences can be observed in the pore jet flow structure between the simulations and the experiments,but the general flow velocity distribution shows a good overall agreement.The axial velocity is generally higher for the pores located near the centre of the packed bed than for the pores near the wall.In addition,the axial velocities are observed to increase near the peripheral pores of the packed bed.This behaviour is predominant for the BCC configuration as compared to the SUC configuration.The velocities near the per展开更多
In 1953 Archard formulated his general law of wear stating that the amount of worn material is proportional to the normal force and the sliding distance, and is inversely proportional to the hardness of the material. ...In 1953 Archard formulated his general law of wear stating that the amount of worn material is proportional to the normal force and the sliding distance, and is inversely proportional to the hardness of the material. Five years later in 1958, Rabinowicz suggested a criterion determining the minimum size of wear particles. Both concepts became very popular due to their simplicity and robustness, but did not give thorough explanation of the mechanisms involved. It wasn't until almost 60 years later in 2016 that Aghababaei, Warner and Molinari(AWM) used quasi-molecular simulations to confirm the Rabinowicz criterion. One of the central quantities remained the "asperity size". Because real surfaces have roughness on many length scales, this size is often ill-defined. The present paper is devoted to two main points: First, we generalize the Rabinowicz-AWM criterion by introducing an "asperity-free" wear criterion, applicable even to fractal roughness. Second, we combine our generalized Rabinowicz criterion with the numerical contact mechanics of rough surfaces and formulate on this basis a deterministic wear model. We identify two types of wear: one leading to the formation of a modified topography which does not wear further and one showing continuously proceeding wear. In the latter case we observe regimes of least wear, mild wear and severe wear which have a clear microscopic interpretation. The worn volume in the region of mild wear occurs typically to be a power law of the normal force with an exponent not necessarily equal to one. The method provides the worn surface topography after an initial settling phase as well as the size distribution of wear particles. We analyse different laws of interface interaction and the corresponding wear laws. A comprehensive parameter study remains a task for future research.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10942004, 11172306)the National Defense Innovation Funds of the Chinese Academy of Sciences (Grant No. Y175031XML)
文摘As a popular meshfree particle method,the smoothed particle hydrodynamics(SPH) has suffered from not being able to di-rectly implement the solid boundary conditions.This influences the SPH approximation accuracy and hinders its further de-velopment and application to engineering and scientific problems.In this paper,a coupled dynamic solid boundary treatment(SBT) algorithm has been proposed,after investigating the features of existing SPH SBT algorithms.The novelty of the cou-pled dynamic SBT algorithm includes a new repulsive force between approaching fluid and solid particles,and a new numeri-cal approximation scheme for estimating field functions of virtual solid particles.The new SBT algorithm has been examined with three numerical examples including a typical dam-break flow,a dam-break flow with a sharp-edged obstacle,and a water entry problem.It is demonstrated that SPH with this coupled dynamic boundary algorithm can lead to accurate results with smooth pressure field,and that the new SBT algorithm is also suitable for complex and even moving solid boundaries.
基金Project(2012AA03A514)supported by the National High-Tech Research and Development Program of ChinaProject(2013M531803)supported by the Postdoctoral Science Foundation of China+1 种基金Project(74341016096)supported by the Postdoctoral Science Foundation of Central South University,ChinaProject(2013RS4031)supported by the Hunan Provincial Science and Technology Plan,China
文摘Effects of hot extrusion (HEX) and heat treatment on prior particle boundary (PPB), MC carbides,γ′precipitates and grain size of nickel-base FGH96 superalloy were studied. The results show that PPB consists of largeγ′, MC carbides enriched with Ti, Nb and a modicum of oxides. Thereafter, it can efficaciously tune γ′ precipitate size from micrometer down to nanometer region and simultaneously results in the annihilation of PPB by HEX process. The activation energy for grain growth of as-HEXed FGH96 superalloy was measured to be 402.6 kJ/mol, indicating that γ′ precipitate serves the critical role in inhibiting grain growth under sub-solvus heat treatment. Moreover, the results reveal that grain growth is primarily restrained by MC carbide in the case of super-solvus temperature.
基金financial support from the Ministry of Science and Technology of China with Grant No.2011YQ12003909the ongoing support through the startup fund awarded to Xiaoxing Liu from the "Hundred Talents Program" of the Institute of Process Engineering,Chinese Academy of Sciences
文摘The fiuidization behavior of Geldart A particles in a gas-solid micro-fluidized bed was investigated by Eulerian-Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation showed that the predicted minimum bubbling velocities were significantly lower than the experimental data even when an extremely fine grid size (of approximately one particle diameter) was used. The modified Gibilaro drag model was therefore tested next. The predicted minimum bubbling velocity and bed voidage were in reasonable agreement with the experimental data available in literature. The experimentally observed regime transition phenomena from bubbling to slugging were also reproduced successfully in the simulations. Parametric studies indicated that the solid-wall boundary conditions had a significant impact on the predicted gas and solid flow behavior.
基金Supported by the National Natural Science Foundation of China (No. 29836130).
文摘The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swarm is better represented. In this paper,the cell model and its development were reviewed, and themodifications of outer cell boundary conditions were suggested. Atthe cell outer boundary, the restriction of uniform liquid flow wasremoved in our simulation conducted in the reference frame fixed withthe particle.
基金financially supported by the National Natural Science Foundation of China(Grant No.51279041)
文摘Smoothed Particle Hydrodynamics method (SPFI) has a good adaptability for simulating of free surface flow problems. However, there are some shortcomings of SPH which are still in open discussion. This paper presents a corrected solid boundary handling method for weakly compressible SPH. This improved method is very helpful for numerical stability and pressure distribution. Compared with other solid boundary handling methods, this corrected method is simpler for virtual ghost particle interpolation and the ghost particle evaluation relationship is clearer. Several numerical tests are given, like dam breaking, solitary wave impact and sloshing tank waves. The results show that the corrected solid boundary processing method can recover the spurious oscillations of pressure distribution when simulating the problems with complex geometry boundary.
基金This work was financially supported by a grant from Nonferrous Corporation Africa Mining Public Limited Company and National Natural Science Foundation of China(No.51804020).
文摘As ore grades constantly decline,more copper tailings,which still contain a considerable amount of unrecovered copper,are expected to be produced as a byproduct of froth flotation.This research reveals the occurrence mechanism of copper minerals in typical copper sulfide tailings using quantitative mineral liberation analysis(MLA)integrated with scanning electron microscopy–energy dispersive spectroscopy(SEM–EDS).A comprehensive mineralogical characterization was carried out,and the results showed that almost all copper minerals were highly disseminated within coarse gangue particles,except for 9.2wt%chalcopyrite that occurred in the 160–180μm size fraction.The predominant copper-bearing mineral was chalcopyrite,which was closely intergrown with orthoclase and muscovite rather than quartz.The flotation tailings sample still contained 3.28wt%liberated chalcopyrite and 3.13wt%liberated bornite because of their extremely fine granularity.The SEM–EDS analysis further demonstrated that copper minerals mainly occurred as fine dispersed and fully enclosed structures in gangue minerals.The information obtained from this research could offer useful references for recovering residual copper from flotation tailings.
基金financially supported by the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30567)the support of EPSRC Grant(UK):PURIFY(EP/V000756/1)the Scientific Research Foundation of Education Department of Hunan Province,China(Grant No.20B557).
文摘Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-Project-ID 422037413-TRR 287Gefördert durch die Deutsche Forschungsgemeinschaft(DFG)-Projektnummer 422037413-TRR 287.
文摘The present paper presents an experimental and numerical investigation of the dispersion of the gaseous jet flow and co-flow for the simple unit cell(SUC)and body-centred cubic(BCC)configuration of particles in packed beds.The experimental setup is built in such a way that suitable and simplified boundary conditions are imposed for the corresponding numerical framework,so the simulations can be done under very similar conditions as the experiments.Accordingly,a porous plate is used for the co-flow to achieve the uniform velocity and the fully developed flow is ensured for the jet flow.The SUC and BCC particle beds consist of 3D-printed spheres,and the non-isotropy near the walls is mostly eliminated by placing half-spheres at the channel walls.The flow velocities are analysed directly at the exit of the particle bed for both beds over 36 pores for the SUC configuration and 60 pores for the BCC configuration,for particle Reynolds numbers of 200,300,and 400.Stereo particle image velocimetry is experimentally arranged in such a way that the velocities over the entire region at the exit of the packed bed are obtained instantaneously.The numerical method consists of a state-of-the-art immersed boundary method with adaptive mesh refinement.The paper presents the pore jet structure and velocity field exiting from each pore for the SUC and BCC packed particle beds.The numerical and experimental studies show a good agreement for the SUC configuration for all flow velocities.For the BCC configuration,some differences can be observed in the pore jet flow structure between the simulations and the experiments,but the general flow velocity distribution shows a good overall agreement.The axial velocity is generally higher for the pores located near the centre of the packed bed than for the pores near the wall.In addition,the axial velocities are observed to increase near the peripheral pores of the packed bed.This behaviour is predominant for the BCC configuration as compared to the SUC configuration.The velocities near the per
基金conducted under partial financial support from the German Ministry for Research and Education BMBF (No. 13NKE011A)
文摘In 1953 Archard formulated his general law of wear stating that the amount of worn material is proportional to the normal force and the sliding distance, and is inversely proportional to the hardness of the material. Five years later in 1958, Rabinowicz suggested a criterion determining the minimum size of wear particles. Both concepts became very popular due to their simplicity and robustness, but did not give thorough explanation of the mechanisms involved. It wasn't until almost 60 years later in 2016 that Aghababaei, Warner and Molinari(AWM) used quasi-molecular simulations to confirm the Rabinowicz criterion. One of the central quantities remained the "asperity size". Because real surfaces have roughness on many length scales, this size is often ill-defined. The present paper is devoted to two main points: First, we generalize the Rabinowicz-AWM criterion by introducing an "asperity-free" wear criterion, applicable even to fractal roughness. Second, we combine our generalized Rabinowicz criterion with the numerical contact mechanics of rough surfaces and formulate on this basis a deterministic wear model. We identify two types of wear: one leading to the formation of a modified topography which does not wear further and one showing continuously proceeding wear. In the latter case we observe regimes of least wear, mild wear and severe wear which have a clear microscopic interpretation. The worn volume in the region of mild wear occurs typically to be a power law of the normal force with an exponent not necessarily equal to one. The method provides the worn surface topography after an initial settling phase as well as the size distribution of wear particles. We analyse different laws of interface interaction and the corresponding wear laws. A comprehensive parameter study remains a task for future research.
文摘在计算域内生成密实圆形颗粒集合体是离散单元法模拟中的一个重要问题.颗粒生成算法中,波前法(包括closed型和open型)作为一种纯几何算法,由于其高效性得到了广泛应用.然而,波前法生成的颗粒集合体在域边界上存在较大的间隙,从而导致边界的非光滑性.为克服这一问题,将closed型波前法中处理外域边界方法拓展到open型波前法.该算法通过Netwon-Raphson迭代方法得到颗粒的中心坐标和半径,从而保证新生成的颗粒与域边界相切,最终消除了边界间隙和凹凸性.针对open型波前法在堆积过程中出现的右端抬升问题,给出了解决方法,消除了潜在的优势结构面,进一步提高了计算效率.结果表明:提出的closed型和open型算法对不同的内外域边界都有很好的适用性.相比其他颗粒生成算法,open型算法效率非常高,其效率分别是离散元模拟软件和closed型的20500倍和4.4倍.在考虑域边界情况下,open型波前法在2.3 GHz的笔记本电脑上生成410万密实圆形颗粒集合体只需0.9 s.