局部阴影遮挡(Partial Shading Condition,PSC)使得最大功率点追踪(Maximum Power Point Tracking,MPPT)的追踪速度和精度难以得到保证。对布谷鸟搜索算法(Cuckoo Search Algorithm,CSA)和自适应变步长的改进扰动观察法(Improved Pertur...局部阴影遮挡(Partial Shading Condition,PSC)使得最大功率点追踪(Maximum Power Point Tracking,MPPT)的追踪速度和精度难以得到保证。对布谷鸟搜索算法(Cuckoo Search Algorithm,CSA)和自适应变步长的改进扰动观察法(Improved Perturbation and Observation,IP&O)进行了研究并应用到光伏的MPPT控制中。利用CSA出色的全局搜索能力快速收敛到全局最大功率点(Maximum Power Point,MPP)附近,然后利用IP&O出色的局部搜索能力快速、准确地收敛到MPP。最后设置了几种光照情况进行仿真,并用扰动观察法和粒子群(Particle Swarm Optimization,PSO)方法进行对比。通过仿真验证了所提出的方法具有更快的追踪速度和更高的精确度。展开更多
针对光伏阵列的输出特性在局部阴影情况下具有高度非线性、时变性以及多个局部功率极值点等特点,并导致传统MPPT(maximum power point tracking)算法失效的问题,提出一种基于粒子群优化算法和变步长扰动观察法的改进MPPT算法。其中粒子...针对光伏阵列的输出特性在局部阴影情况下具有高度非线性、时变性以及多个局部功率极值点等特点,并导致传统MPPT(maximum power point tracking)算法失效的问题,提出一种基于粒子群优化算法和变步长扰动观察法的改进MPPT算法。其中粒子群优化算法用于系统启动和光照情况发生突变后迅速定位近似最大功率点,变步长扰动观察法则根据实际状况使光伏阵列精确稳定在最大功率点,以克服使用数学模型与实际输出特性偏差或微小扰动所导致的功率损失。通过建立Matlab/Simulink模型进行仿真实验,实验结果表明所提算法使光伏阵列在不同阴影情况下以及发生光照强度突变时都具有迅速精确的跟踪能力。展开更多
在光伏阵列受到局部阴影遮挡条件下,针对光伏阵列的功率-电压(P-V)输出特性曲线在多峰值状态下的最大功率点跟踪(maximum power point tracking,MPPT)问题,通过对粒子群(particle swarm optimization,PSO)算法的改进,提出了一种基于新...在光伏阵列受到局部阴影遮挡条件下,针对光伏阵列的功率-电压(P-V)输出特性曲线在多峰值状态下的最大功率点跟踪(maximum power point tracking,MPPT)问题,通过对粒子群(particle swarm optimization,PSO)算法的改进,提出了一种基于新型粒子群(novel particle swarm optimization,NPSO)算法的MPPT方法(以下简称NPSO_MPPT算法)。NPSO算法通过将种群粒子分为收敛粒子和自由粒子两类,提高了原始PSO算法的全局搜索能力。在Simulink环境下,分别对P&O、基于PSO算法的MPPT方法(以下简称PSO_MPPT算法)和NPSO_MPPT算法进行仿真测试,仿真结果表明,NPSO_MPPT算法相比较现有的P&O和PSO_MPPT算法,具有发电效率高和不易陷入局部功率极大值等优点。展开更多
实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群...实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。展开更多
文摘局部阴影遮挡(Partial Shading Condition,PSC)使得最大功率点追踪(Maximum Power Point Tracking,MPPT)的追踪速度和精度难以得到保证。对布谷鸟搜索算法(Cuckoo Search Algorithm,CSA)和自适应变步长的改进扰动观察法(Improved Perturbation and Observation,IP&O)进行了研究并应用到光伏的MPPT控制中。利用CSA出色的全局搜索能力快速收敛到全局最大功率点(Maximum Power Point,MPP)附近,然后利用IP&O出色的局部搜索能力快速、准确地收敛到MPP。最后设置了几种光照情况进行仿真,并用扰动观察法和粒子群(Particle Swarm Optimization,PSO)方法进行对比。通过仿真验证了所提出的方法具有更快的追踪速度和更高的精确度。
文摘针对光伏阵列的输出特性在局部阴影情况下具有高度非线性、时变性以及多个局部功率极值点等特点,并导致传统MPPT(maximum power point tracking)算法失效的问题,提出一种基于粒子群优化算法和变步长扰动观察法的改进MPPT算法。其中粒子群优化算法用于系统启动和光照情况发生突变后迅速定位近似最大功率点,变步长扰动观察法则根据实际状况使光伏阵列精确稳定在最大功率点,以克服使用数学模型与实际输出特性偏差或微小扰动所导致的功率损失。通过建立Matlab/Simulink模型进行仿真实验,实验结果表明所提算法使光伏阵列在不同阴影情况下以及发生光照强度突变时都具有迅速精确的跟踪能力。
文摘在光伏阵列受到局部阴影遮挡条件下,针对光伏阵列的功率-电压(P-V)输出特性曲线在多峰值状态下的最大功率点跟踪(maximum power point tracking,MPPT)问题,通过对粒子群(particle swarm optimization,PSO)算法的改进,提出了一种基于新型粒子群(novel particle swarm optimization,NPSO)算法的MPPT方法(以下简称NPSO_MPPT算法)。NPSO算法通过将种群粒子分为收敛粒子和自由粒子两类,提高了原始PSO算法的全局搜索能力。在Simulink环境下,分别对P&O、基于PSO算法的MPPT方法(以下简称PSO_MPPT算法)和NPSO_MPPT算法进行仿真测试,仿真结果表明,NPSO_MPPT算法相比较现有的P&O和PSO_MPPT算法,具有发电效率高和不易陷入局部功率极大值等优点。
文摘实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。